Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234572

RESUMO

The utilization of CO2 attracts much research attention because of global warming. The CO2/epoxide cycloaddition reaction is one technique of CO2 utilization. However, homogeneous catalysts with both Lewis acidic and basic and toxic solvents, such as DMF, are needed in the CO2/epoxide cycloaddition reaction. As a result, this study focuses on the development of heterogeneous catalysts with both Lewis acidic and basic sites for the CO2 utilization of the CO2/epoxide cycloaddition reactions without the addition of a DMF toxic solvent. For the first time, the Zr-Mg mixed oxide aerogels with Lewis acidic and basic sites are synthesized for the CO2/propylene oxide (PO) cycloaddition reactions. To further increase the basic sites, 3-Aminopropyl trimethoxysilane (APTMS) with -NH2 functional group is successfully grafted on the Zr-Mg mixed oxide aerogels. The results indicate that the highest yield of propylene carbonate (PC) is 93.1% using the as-developed APTMS-modified Zr-Mg mixed oxide aerogels. The as-prepared APTMS-modified Zr-Mg mixed oxide aerogels are great potential in industrial plants for CO2 reduction in the future.

2.
Regul Toxicol Pharmacol ; 107: 104426, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31325534

RESUMO

Metal-organic frameworks (MOFs) nanoparticles are a class of porous crystalline materials constructed from the bonding metal ions or clusters linked with organic ligands to form frameworks. MIL-101(Cr), one of the most representative MOFs, is a three-dimensional chromium terephthalate-base porous material consisted of chromium (III)-trimers cross-linked by 1,4-benzene dicarboxylate. The present study focused on determining the safety of MIL-101(Cr) nanoparticle. The acute oral toxicity and 28-day oral toxicity in mice were investigated. An acute oral toxicity test of MIL-101(Cr) nanoparticle for female mice showed that no mortality or any significant change observed at 2000 mg/kg body weight. A dose-dependent 28-day oral toxicity evaluation of MIL-101(Cr) nanoparticle for male and female mice revealed no significant effects on mortality, feed consumption, body weight, organ weight, and behavior. Assessments of hematology, clinical biochemistry, and histopathology revealed no adverse effects in mice treated with MIL-101(Cr) nanoparticle (10-1000 mg/kg). These results suggest that MIL-101(Cr) nanoparticle has no significant acute and subacute toxicity. The no observed adverse effect level of MIL-101(Cr) nanoparticle was defined as at least 1000 mg/kg/day orally for 28 days for male and female mice.


Assuntos
Cromo/toxicidade , Estruturas Metalorgânicas/toxicidade , Nanopartículas/toxicidade , Animais , Feminino , Masculino , Camundongos Endogâmicos ICR , Nível de Efeito Adverso não Observado , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...