Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826262

RESUMO

Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro-nano plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥ 95 % relative humidity) and dry conditions (i.e., ≤ 5 % relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm-1 and the formation of the carboxylic acid at peak 1685 cm-1 are significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared to dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.

2.
Sci Rep ; 13(1): 13877, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620365

RESUMO

Whether a tire crumb rubber (TCR) playground would expose children to potentially harmful chemicals such as heavy metals is an open question. The released metals available for pickup on the surface of TCR tiles was studied by accelerated 2-year aging of the TCRs in the NIST-SPHERE (National Institute of Standards and Technology Simulated Photodegradation via High Energy Radiant Exposure). The dermal contact was mimicked by a method of composite surface wiping from US Environmental Protection Agency throughout the weathering process. The surface release of ten most concerned harmful metals (Be, Cr, Cu, As, Se, Cd, Sb, Ba, Tl, Pb) was monitored through the course of aging. The cumulative release of Cu, As, Tl, and Sb reached potentially harmful levels at various times within 3 years, although only Cr was found at a harmful level on the surface of the tiles. Taking the cleansing effect of precipitation or periodic cleansing with rain into account, TCR playgrounds may still be safe for use.


Assuntos
Metais , Borracha , Estados Unidos , Humanos , Criança , Fotólise , Tempo (Meteorologia) , Chuva
3.
Langmuir ; 37(6): 2170-2178, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533619

RESUMO

The past decade has seen increased research interest in studying bicontinuous structures formed via colloidal self-assembly due to their many useful applications. A new type of colloidal gel, solvent segregation-driven gel (SeedGel), has been recently demonstrated as an effective approach to arrest bicontinuous structures with unique and intriguing properties, such as thermoreversibility, structural reproducibility, and sensitive temperature response. Here, using a model system with silica particles in the 2,6-lutidine/water binary solvent, we investigate the factors controlling the domain size of a SeedGel system by varying the particle concentration, solvent ratio, and quenching protocol. A phase diagram is identified to produce SeedGels for this model system. Our results indicate that by adjusting the sample composition, it is possible to realize bicontinuous domains with well-controlled repeating distances (periodicities). In addition, the effect of quenching rate on the domain size is systematically investigated, showing that it is a very sensitive parameter to control domain sizes. By further heating SeedGel up into the spinodal region, the structure evolution under high temperatures is also investigated and discussed. These results provide important insights into how to control bicontinuous structures in SeedGel systems.

4.
Nat Commun ; 12(1): 910, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568668

RESUMO

Bicontinuous porous structures through colloidal assembly realized by non-equilibrium process is crucial to various applications, including water treatment, catalysis and energy storage. However, as non-equilibrium structures are process-dependent, it is very challenging to simultaneously achieve reversibility, reproducibility, scalability, and tunability over material structures and properties. Here, a novel solvent segregation driven gel (SeedGel) is proposed and demonstrated to arrest bicontinuous structures with excellent thermal structural reversibility and reproducibility, tunable domain size, adjustable gel transition temperature, and amazing optical properties. It is achieved by trapping nanoparticles into one of the solvent domains upon the phase separation of the binary solvent. Due to the universality of the solvent driven particle phase separation, SeedGel is thus potentially a generic method for a wide range of colloidal systems.

5.
NanoImpact ; 172020.
Artigo em Inglês | MEDLINE | ID: mdl-33029568

RESUMO

Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.

6.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722058

RESUMO

Nanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel. Potential limitations of different wheels include the release of fragments from the wheel during abrasion, wearing of the wheel from the abrasion process, or not releasing a sufficient number of particles for accurate quantitative analysis. In this study, we evaluated five different wheels, including a typically used silicon oxide-based commercial wheel and four wheels fabricated at the National Institute of Standards and Technology (NIST), for their application in nanocoating abrasion studies. A rapid, nondestructive laser scanning confocal microscopy method was developed and used to identify released particles on the abraded surfaces. NIST fabricated a high performing wheel: a noncorrosive, stainless-steel abrasion wheel containing a deep cross-patch. This wheel worked well under both wet and dry conditions, did not corrode in aqueous media, did not release particles from itself, and yielded higher numbers of released particles. These results can be used to help develop a standardized protocol for surface release of particles from nanoenabled products using a commercial rotary Taber abraser.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33033418

RESUMO

Samples of polycarbonate (PC), poly(butylene terephthalate) (PBT), a PC/PBT blend, and poly(styrene-co-acrylonitrile) (SAN), all containing 3% TiO2 (by mass), were exposed in the NIST (National Institutes of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) to determine the effects of UV intensity (irradiance), temperature, relative humidity (RH), and UV wavelength on yellowing and gloss loss. There was no effect of irradiance, such that the samples obeyed reciprocity and doubling the irradiance doubled the rate of degradation. The activation energy for yellowing was determined to be ≈ 20 kJ/mol for PC, PC/PBT, and SAN and ≈ 16 kJ/mol for PBT. The activation energy for gloss loss was determined to be 9-16 kJ/mol. Thus, a 10 °C increase in temperature results in a 20%-30% increase in degradation rate. There was no consistent effect of RH on PC or PC/PBT yellowing or gloss loss. SAN degraded rapidly under dry conditions but showed little effect for RH > 10%. PBT lost gloss more slowly under dry conditions but displayed no RH effect with yellowing. Shorter wavelength UV had a greater effect on PC/PBT compared to PC or PBT.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33551517

RESUMO

Understanding the responses of materials to environmental variables is essential for performing meaningful accelerated weathering and service life prediction. Samples of polycarbonate-b-resorcinol polyarylate copolymer (RPA), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), and two polycarbonate copolymers with silicone or aliphatic diacids were exposed in the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) to determine the effects of ultraviolet intensity (UV irradiance), temperature, relative humidity (RH), and UV wavelength on yellowing and gloss loss and were compared to other aromatic polymers. All showed proportional response to irradiance (i.e., reciprocity) except ABS, which deviated notably at elevated temperatures. The activation energy for ABS yellowing was higher than other aromatic polymers (31 kJ mol-1 ± 2 kJ mol-1) while RPA had a slightly negative activation energy (-5 kJ mol-1 ± 3 kJ mol-1), reflecting differences in their photodegradation mechanisms. These two polymers also exhibited faster degradation when the RH was ≤ 10 % compared to ≥ 50 % RH. Wavelength effects varied among the polymers. The results indicate that predictive accelerated weathering should be performed with UV sources that accurately reproduce sunlight, at temperatures as close as possible to use conditions, and with RH > 10 %.

9.
Prog Org Coat ; 1252018.
Artigo em Inglês | MEDLINE | ID: mdl-33033422

RESUMO

As original equipment manufacturers (OEMs) strive to deliver improved coating performance with a sustainable footprint, opportunities for innovation are emerging, particularly on improving mechanical properties, appearance, and solids content. Resistance to scratch and mar damage is one of the key performance attributes that has been emphasized by both OEMs and consumers to maintain a vehicle's appearance and corrosion resistance over its service lifetime. Fundamental methodologies including instrumented scratch measurements at multiple size scales are used in this work as part of a product development strategy to better understand the scratch and mar behavior of automotive topcoats. This study compares physical properties of several melamin-formaldehyde and isocyanate cured clearcoats over the appropriate basecoats. Micro- and nano-scratch techniques were employed in combination with industry standard method, Amtec-Kistler carwash to identify performance differences under different scratch conditions. Mechanical and viscoelastic properties of the coatings were studied using tensile tests and dynamic mechanical thermal analysis (DMTA) to better understand the failure mechanisms associated with plastic deformation and fracture at different scratch scales. The information gathered from the above testing protocols is used to analyze coating performance in terms of the contact strain, transitions between elastic - plastic behavior, coefficient of friction and stress localization.

10.
Environ Sci Nano ; 3(3): 657-669, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27529026

RESUMO

Concomitant with the development of polymer nanocomposite (PNC) technologies across numerous industries is an expanding awareness of the uncertainty with which engineered nanoparticles embedded within these materials may be released into the external environment, particularly liquid media. Recently there has been an interest in evaluating potential exposure to nanoscale fillers from PNCs, but existing studies often rely upon uncharacterized, poor quality, or proprietary materials, creating a barrier to making general mechanistic conclusions about release phenomena. In this study we employed semiconductor nanoparticles (quantum dots, QDs) as model nanofillers to quantify potential release into liquid media under specific environmental conditions. QDs of two sizes were incorporated into low-density polyethylene by melt compounding and the mixtures were extruded as free-standing fluorescent films. These films were subjected to tests under conditions intended to accelerate potential release of embedded particles or dissolved residuals into liquid environments. Using inductively-coupled plasma mass spectrometry and laser scanning confocal microscopy, it was found that the acidity of the external medium, exposure time, and small differences in particle size (on the order of a few nm) all play pivotal roles in release kinetics. Particle dissolution was found to play a major if not dominant role in the release process. This paper also presents the first evidence that internally embedded nanoparticles contribute to the mass transfer, an observation made possible via the use of a model system that was deliberately designed to probe the complex relationships between nanoparticle-enabled plastics and the environment.

11.
ACS Nano ; 5(4): 3391-9, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21410222

RESUMO

The morphological characterization of polymer nanocomposites over multiple length scales is a fundamental challenge. Here, we report a technique for high-throughput monitoring of interface and dispersion in polymer nanocomposites based on Förster resonance energy transfer (FRET). Nanofibrillated cellulose (NFC), fluorescently labeled with 5-(4,6-dichlorotriazinyl)-aminofluorescein (FL) and dispersed into polyethylene (PE) doped with Coumarin 30 (C30), is used as a model system to assess the ability of FRET to evaluate the effect of processing on NFC dispersion in PE. The level of energy transfer and its standard deviation, measured by fluorescence spectroscopy and laser scanning confocal microscopy (LSCM), are exploited to monitor the extent of interface formation and composite homogeneity, respectively. FRET algorithms are used to generate color-coded images for a real-space observation of energy transfer efficiency. These images reveal interface formation at a nanoscale while probing a macroscale area that is large enough to be representative of the entire sample. The unique ability of this technique to simultaneously provide orientation/spatial information at a macroscale and nanoscale features, encoded in the FRET signal, provides a new powerful tool for structure-property-processing investigation in polymer nanocomposites.

12.
Nanomedicine (Lond) ; 4(2): 145-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19193182

RESUMO

AIMS: To determine if commercial sunscreens contain distinct nanoparticles and to evaluate analytical methods for their ability to detect and characterize nanoparticles in unmodified topical products using commercial sunscreens as a model. METHODS: A total of 20 methods were evaluated for their ability to detect and characterize nanoparticles in unmodified commercial sunscreens. RESULTS: Variable-pressure scanning-electron microscopy, atomic-force microscopy, laser-scanning confocal microscopy and X-ray diffraction were found to be viable and complementary methods for detecting and characterizing nanoparticles in sunscreens. CONCLUSIONS: It was determined that several of the commercial sunscreens contained distinct nanoparticles. No one method was able to completely characterize nanoparticles in the unmodified products but the viable methods provided complementary information regarding the nanoparticles and how they were interacting with the sunscreen matrix.


Assuntos
Nanopartículas Metálicas/análise , Óxidos/análise , Protetores Solares/análise , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...