Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 41(11): 2501-2515, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37132090

RESUMO

Total hip joint replacement (THR) is clinically well-established. In this context, the resulting range of motion (ROM) is crucial for patient satisfaction when performing joint movements. However, the ROM for THR with different bone preserving strategies (short hip stem and hip resurfacing) raises the question of whether the ROM is comparable with conventional hip stems. Therefore, this computer-based study aimed to investigate the ROM and type of impingement for different implant systems. An established framework with computer-aided design 3D models based on magnetic resonance imaging data of 19 patients with hip osteoarthritis was used to analyse the ROM for three different implant systems (conventional hip stem vs. short hip stem vs. hip resurfacing) during typical joint movements. Our results revealed that all three designs led to mean maximum flexion higher than 110°. However, hip resurfacing showed less ROM (-5% against conventional and -6% against short hip stem). No significant differences were observed between the conventional and short hip stem during maximum flexion and internal rotation. Contrarily, a significant difference was detected between the conventional hip stem and hip resurfacing during internal rotation (p = 0.003). The ROM of the hip resurfacing was lower than the conventional and short hip stem during all three movements. Furthermore, hip resurfacing shifted the impingement type to implant-to-bone impingement compared with the other implant designs. The calculated ROMs of the implant systems achieved physiological levels during maximum flexion and internal rotation. However, bone impingement was more likely during internal rotation with increasing bone preservation. Despite the larger head diameter of hip resurfacing, the ROM examined was substantially lower than that of conventional and short hip stem.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Osteoartrite do Quadril , Humanos , Artroplastia de Quadril/métodos , Osteoartrite do Quadril/cirurgia , Amplitude de Movimento Articular/fisiologia , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/cirurgia
2.
J Orthop Res ; 36(10): 2736-2744, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29727032

RESUMO

The current trend is toward shorter hip stems. While there is a general agreement on the need for a cement mantle thicker than 2 mm, some surgeons prefer line-to-line cementation, where the mantle has only the thickness provided by the cement-bone interdigitation. The aim of this study was to assess if a relatively short, polished hip stem designed for a standard cementation can also be cemented line-to-line without increasing the risk of long-term loosening. Composite femurs with specific open-cell foam to allow cement-bone interdigitation were used. A validated in-vitro biomechanical cyclic test replicating long-term physiological loading was applied to femurs where the same stem was implanted with the Standard-mantle (optimal stem size) and Line-to-line (same rasp, one-size larger stem). Implant-bone motions were measured during the test. Inducible micromotions never exceeded 10 µm for both implant types (differences statistically not-significant). Permanent migrations ranged 50-300 µm for both implant types (differences statistically not-significant). While in the standard-mantle specimens there was a pronounced trend toward stabilization, line-to-line had less tendency to stabilize. The cement cracks were observed after the test by means of dye penetrants: The line-to-line specimens included the same cracks of the standard-mantle (but in the line-to-line specimens they were longer), and some additional cracks. The micromotions and cement damage were consistent with those observed in-vitro and clinically for stable stems, confirming that none of the specimens became dramatically loose. However, it seems that for this relatively short polished stem, standard-mantle cementation is preferable, as it results in less micromotion and less cement cracking. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2736-2744, 2018.


Assuntos
Prótese de Quadril/estatística & dados numéricos , Humanos , Desenho de Prótese , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...