Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(21): 20363-20373, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28567674

RESUMO

Degradation of a widely used antibiotic, the para-aminosalicylic acid (PAS), and mineralization of its aqueous solution was investigated by electro-Fenton process using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with applied currents in the range of 50-1000 mA. This process produces the highly oxidizing species, the hydroxyl radical (•OH), which is mainly responsible for the oxidative degradation of PAS. An absolute rate constant of 4.17 × 109 M-1 s-1 for the oxidation of PAS by ●OH was determined from the competition kinetics method. Degradation rate of PAS increased with current reaching an optimal value of 500 mA with complete disappearance of 0.1 mM PAS at 7 min using Pt/carbon-felt cell. The optimum degradation rate was reached at 300 mA for BDD/carbon-felt. The latter cell was found more efficient in total organic carbon (TOC) removal where a complete mineralization was achieved within 240 min. A multi-step mineralization process was observed with the formation of a number of aromatic intermediates, short-chain carboxylic acids, and inorganic ions. Eight aromatic intermediate products were identified using both LC-Q-ToF-MS and GC-MS techniques. These products were the result of hydroxylation of PAS followed by multiple additions of hydroxyl radicals to form polyhydroxylated derivatives. HPLC and GC/MS analyses demonstrated that extended oxidation of these intermediate products conducted to the formation of various short-chain carboxylic acids. Prolonged electrolysis resulted in a complete mineralization of PAS with the evolution of inorganic ions such as NO3- and NH4+. Based on the identified intermediates, carboxylic acids and inorganic ions, a plausible mineralization pathway is also deduced. The remarkably high degree of mineralization (100%) achieved by the present EF process highlights the potential application of this technique to the complete removal of salicylic acid-based pharmaceuticals from contaminated water.


Assuntos
Ácido Aminossalicílico/química , Boro , Carbono , Diamante , Eletrólise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Antibacterianos/química , Ácidos Carboxílicos , Cromatografia Líquida de Alta Pressão , Eletrodos , Peróxido de Hidrogênio , Radical Hidroxila , Cinética , Minerais , Oxirredução , Preparações Farmacêuticas/química , Platina , Espectrometria de Massas em Tandem , Águas Residuárias/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...