Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 90: 102002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423542

RESUMO

Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aß) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aß as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Processamento de Proteína Pós-Traducional , Biomarcadores/metabolismo
2.
Front Aging Neurosci ; 14: 944144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966795

RESUMO

The midlife transition period in women marks the progressive flattening of neurological health along with increased adiposity, dyslipidemia, frailty, and inflammatory responses mainly attributed to the gradual decline in estrogen levels. Conflicting reports of hormone replacement therapy (HRT) necessitate the exploration of novel therapeutic interventions using bioactive natural products having the least toxicity and a holistic mode of action for the preservation of metabolic homeodynamics with aging in women. The present study was planned to investigate the effects of aging and/or a high-fat diet (HFD) on cognitive impairments and anxiety and further their management by dietary supplement with the Tinospora cordifolia stem powder (TCP). Acyclic female rats were included in this study as the model system of the perimenopause phase of women along with young 3-4 months old rats as controls. Rats were fed on with and without TCP supplemented normal chow or HFD for 12 weeks. Animals fed on a TCP supplemented normal chow showed consistent management of body weight over a 12-week regimen although their calorie intake was much higher in comparison to their age-matched controls. Post-regimen, neurobehavioral tests, such as novel object recognition and elevated plus maze, performed on these animals showed improvement in their learning and memory abilities as well as the anxiety-like behavior. Furthermore, due to the presence of multiple components, TCP was observed to modulate the expression of key marker proteins to ameliorate neuroinflammation and apoptosis and promote cell survival and synaptic plasticity in the hippocampus and the prefrontal cortex (PFC) regions of the brain. These findings suggest that TCP supplementation in diet during the midlife transition period in women may be a potential interventional strategy for the management of menopause-associated anxiety and cognitive impairments and healthy aging.

3.
Biogerontology ; 23(6): 809-824, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767131

RESUMO

Reduced bone mineral density, and muscle strength are the hallmark of aging-related motor coordination deficits and related neuropathologies. Since cerebellum regulates motor movements and balance perception of our body, therefore it may be an important target to control the age-related progression of motor dysfunctions. Dry stem powder of Tinospora cordifolia (TCP) was tested as a food supplement to elucidate its activity to attenuate age-associated locomotor dysfunctions. Intact acyclic middle-aged female rats were used in this study as the model system of the transition phase from premenopause to menopause in women along with cycling young adult rats. Normal chow or 30% High Fat Diet (HFD), supplemented with or without TCP was fed to animals for 12 weeks and then tested for locomotor performance on rotarod followed by post-sacrifice protein expression studies. In comparison to young adults, middle-aged animals showed an increase in number of falls and lesser time spent in rotarod performance test, whereas, animals given TCP supplemented feed showed improvement in performance with more pronounced effects observed in normal chow than HFD fed middle-aged rats. Further, due to its multicomponent nature TCP was found to target the expression of various markers of neuroinflammation, apoptosis, cell survival, and synaptic plasticity in the cerebellum region. The current findings suggest that TCP supplementation in the diet may prove to be a potential interventional strategy for the management of frailty and fall-associated morbidities caused by aging-related deterioration of bone mineral density, and muscle strength.


Assuntos
Tinospora , Animais , Feminino , Ratos , Sobrevivência Celular , Extratos Vegetais , Envelhecimento , Dieta Hiperlipídica , Cerebelo
4.
Neurochem Res ; 47(7): 1799-1815, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35303225

RESUMO

Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-ß (Aß)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Humanos , Neuroglia/patologia , Sono/fisiologia , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/patologia
5.
Cell Mol Neurobiol ; 40(8): 1367-1381, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32198621

RESUMO

Hyperglycemia is one of the major risk factors responsible for memory impairment in diabetes which may lead to Alzheimer's disease (AD) at a later stage. MicroRNAs are a class of non-coding RNAs that are found to play a role in diabetes. Downregulation of microRNA-29b in diabetes is well reported. Moreover, microRNA-29b is also reported to target the 3' UTR of ß-secretase (BACE-1) enzyme which is involved in the formation of amyloid-beta (Aß) in AD via cleavage of amyloid precursor protein (APP). Therefore, the present study was designed to elucidate whether microRNA-29b could be a link between diabetes and dementia. In the in vitro and in vivo diabetic model, we found downregulation of microRNA-29b due to hyperglycemia. After human microRNA-29b treatment, there was a significant improvement in the short-term and spatial memory in diabetic mice. Also, the human microRNA-29b treatment decreased oxidative stress and BACE-1 activity in diabetes. The present findings revealed that the downregulation of microRNA-29b in diabetes could be associated with memory impairment and increased BACE-1 activity. These results would give a future direction to study the role played by microRNAs in diabetes-associated memory impairment and hence aid in the development of therapeutics to treat the same.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , MicroRNAs/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo
6.
Neuroscience ; 429: 225-234, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982468

RESUMO

Microglia are the brain mononuclear phagocytes which plays a key role in neurodegenerative diseases, like Alzheimer's. Till date, microglia have been explored mostly for their neuro-inflammatory functions. Recent studies have shifted their focus towards less explored functions which involve non-autonomous clearance of protein aggregates. However, these functions are significantly affected by aging and neurodegeneration. In Alzheimer's disease (AD), microglia have been reported to clear amyloid beta (Aß) deposits via phagocytosis or release various pro-inflammatory cytokines. Whether microglia could be beneficial or detrimental to the brain, it all depends upon the type and strength of stimulus. So, if their beneficial properties could be selectively harnessed without activating pro-inflammatory response, a potential therapeutic strategy could be developed to check the formation of protein aggregates like Aß. In the present study, we have checked the effect of toxic amyloid beta oligomers (Aßo) on the microglial phagocytic activity. Our findings revealed that at lower concentrations, Aßo are not toxic to the cells and they can survive even with longer exposures but with decreased phagocytic activity. However, at higher concentrations Aßo become toxic and resulted in modulation of various genes which regulates microglial phagocytic activity. Sulforaphane (SFN) treatment has shown to induce the phagocytic activity of Aßo treated microglial cells. In addition, low dose Aßo and SFN treatment have not shown modulation in the levels of pro-inflammatory mediators of microglia. Taken together, these findings suggest that SFN treatment may ameliorate the Aßo mediated decrease in microglial phagocytic activity.


Assuntos
Doença de Alzheimer , Microglia , Peptídeos beta-Amiloides , Humanos , Isotiocianatos/farmacologia , Fagócitos , Fagocitose , Sulfóxidos
7.
Drug Dev Res ; 81(2): 144-164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820484

RESUMO

Diabetes mellitus (DM) is a gradually rising metabolic disease which is currently affecting millions of people worldwide. Diabetes is associated with various complications like nephropathy, neuropathy, retinopathy, diabetic foot, cognitive impairment, and many more. Evidence suggests that cognitive dysfunction is a rising complication of diabetes which adversely affects the brain of patients suffering from diabetes. Age-related memory impairment is a complication having its major effect on people suffering from diabetes and Alzheimer's. Patients suffering from diabetes are at two times higher risk of developing cognitive dysfunction as compared with normal individuals. Multiple factors which are involved in diabetes related complications are found to play a role in the development of neurodegeneration in Alzheimer's. The problem of insulin deficiency and insulin resistance is well reported in diabetes but there are many studies which suggest dysregulation of insulin levels as a reason behind the development of Alzheimer's. As the link between diabetes and Alzheimer disease (AD) is deepening, there is a need to understand the plausible tie-ins between the two. Emerging role of major factors like insulin imbalance, advanced glycation end products and micro-RNA's involved in diabetes and Alzheimer's have been discussed here. This review helps in understanding the plausible mechanism underlying the pathophysiology of amyloid beta (Aß) plaque formation and tau hyperphosphorylation as well provides information about studies carried out in this area of research. The final thought is to enhance the scientific knowledge on this correlation and develop future therapeutics to treat the same.


Assuntos
Doença de Alzheimer/psicologia , Disfunção Cognitiva/etiologia , Diabetes Mellitus/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Resistência à Insulina , MicroRNAs/genética , Fosforilação , Proteínas tau/metabolismo
8.
Curr Pharm Des ; 25(8): 833-848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799784

RESUMO

Cancer hallmarks help in understanding the diversity of various neoplasms. Epithelial cancers play an immense role in the tumor biology through Epithelial-Mesenchymal Transition (EMT) process. Receptor tyrosine kinase, as well as phosphatidyl ionositol-3 kinase pathways, play an important role in the regulation of cell proliferation, survival, and differentiation during EMT. Till date, numerous studies have shown modulation in the expression profile of potential targets like CD44, EGFR, and Rac in epithelial cancers. CD44 interacts with EGFR and recruits other molecules which further activate the Rac pathway intermediates. This review mainly focused on modulation of genes like CD44, EGFR, and Rac pathway intermediates which play a crucial role in the tumor progression, metastasis, proliferation, and invasion characteristics in epithelial cancers with EMT properties. Hence, targeting Rac pathway might be a more strategically relevant approach in treating epithelial cancers.


Assuntos
Transição Epitelial-Mesenquimal , Receptores de Hialuronatos/genética , Neoplasias Epiteliais e Glandulares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Diferenciação Celular , Proliferação de Células , Receptores ErbB/genética , Humanos
9.
ACS Chem Neurosci ; 10(3): 1149-1156, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30609357

RESUMO

Ever increasing incidence of Alzheimer's diseases (AD) has been reported all over the globe, and practically no drug is currently available for its treatment. In the past 15 years, not a single drug came out of clinical trials. The researchers have yet to discover a drug that could specifically target AD; in fact, the drugs that are about to launch in the global market either belong to natural compounds or are already approved drugs targeting other diseases. So, we need to shift our focus on finding novel targets which are more specific and could either detect or inhibit the disease progression at a very early stage. Microglia are the only resident innate immune cells of the brain that are originated from erythromyeloid progenitors. They migrate to the brain during early embryonic development, although their number is less (∼5 to 10%), but they could act as guardians of the brain. It has been shown that the extracellular deposits of Aß are continuously phagocytosed by microglia in healthy individuals, but this ability would decrease with age and lead to development of AD. In this review, we have explored the possibility of whether microglial cells could be utilized as an early predictor of the AD progression. Here, we discuss the innate immune response of microglial cells, the factors affecting microglia response, microglial receptors to which Aß could bind, and microglial phenotype markers. Last, we conclude with a list of available AD therapeutics along with their mechanism.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Animais , Encéfalo/imunologia , Humanos , Imunidade Inata/fisiologia , Microglia/imunologia
10.
Brain Behav Immun ; 70: 214-232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518527

RESUMO

Chronic liver disease per se induces neuroinflammation that contributes to cognitive deficits in hepatic encephalopathy (HE). However, the processes by which pro-inflammatory molecules result in cognitive impairment still remains unclear. In the present study, a significant increase in the activity of liver function enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) was observed along with increase in plasma ammonia levels after four weeks of bile duct ligation (BDL) in rats suggesting hepatocellular damage. A significant increase was observed in mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in brain regions and liver of BDL rats. Concomitantly, IL-6, TNF-α and MCP-1 protein levels were also increased in brain regions, liver and serum of BDL rats suggesting the involvement of blood-brain-axis in inflammatory response. However, a significant decrease was observed in glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) expression at transcriptional and translation level in brain of BDL rats. Immunohistochemical and flowcytometric analysis revealed reduced number of GFAP-immunopositive astrocytes and Iba1-immunopositive microglia in the brain regions of BDL rats. Further, a significant decline was observed in cognitive functions in BDL rats assessed using Morris water maze and novel object recognition tests. Expression of pro and mature form of brain derived neurotrophic factor (BDNF) and its upstream transcription element showed significant reduction in brain of BDL rats. Taken together, the results of the present study suggest that systemic inflammation and reduced expression of BDNF and its upstream transcription factor plays a key role in cognitive decline in HE.


Assuntos
Cognição/fisiologia , Encefalopatia Hepática/imunologia , Encefalopatia Hepática/fisiopatologia , Animais , Astrócitos , Ductos Biliares , Encéfalo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quimiocina CCL2/análise , Colestase , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/análise , Gliose , Inflamação/fisiopatologia , Interleucina-6/análise , Ligadura , Fígado/metabolismo , Fígado/fisiologia , Masculino , Microglia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/análise
12.
Neurochem Int ; 112: 239-254, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782592

RESUMO

Vascular dementia (VaD) is the leading cause of cognitive decline resulting from vascular lesions. Recent studies have shown that mitochondrial dysfunctions and oxidative stress are involved in cognitive decline. The aim of the present study was to evaluate the beneficial effects of resveratrol-loaded solid lipid nanoparticles (R-SLNs) in permanent bilateral common carotid artery occlusion (BCCAO) induced model of VaD. R-SLNs prepared had average size of 286 nm and 91.25% drug encapsulation efficiency with sustained release. Moreover, R-SLNs had 4.5 times higher levels of resveratrol (RSV) in brain compared to when administered as free RSV. Neurobehavioral analyses revealed that R-SLNs administration successfully ameliorated cognitive decline observed in BCCAO rats. Administration of R-SLNs to BCCAO animals showed significant reduction in mitochondrial reactive oxygen species (ROS) generation, lipid peroxidation, and protein carbonyls. In addition, R-SLNs significantly improved redox ratio and Mn-superoxide dismutase (Mn-SOD) activity. R-SLNs administration resulted in significant reduction in hypoxia-inducible factor 1α (HIF-1α) levels, whereas, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) levels were increased after R-SLNs treatment. Taken together, the results demonstrate that R-SLNs could be a novel and promising therapeutic strategy in VaD as well in other age-related neurodegenerative disorders.


Assuntos
Demência Vascular/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/fisiologia , Resveratrol/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Demência Vascular/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Lipossomos , Masculino , Proteínas de Membrana/agonistas , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
J Nutr Biochem ; 51: 69-79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096318

RESUMO

Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-ß5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-ß5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation.


Assuntos
Hipocampo/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/prevenção & controle , Inibidores de Proteassoma/toxicidade , Aprendizagem Espacial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Linhagem Celular Tumoral , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Injeções Intraventriculares , Isotiocianatos/administração & dosagem , Leupeptinas/administração & dosagem , Leupeptinas/toxicidade , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/administração & dosagem , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Sulfóxidos
14.
Metab Brain Dis ; 33(1): 209-223, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29138968

RESUMO

Perturbations in the cerebral energy metabolism are anticipated to be an important factor by which ammonia may exert its toxic effects on the central nervous system. The present study was designed to investigate the role of impaired mitochondrial functions and cerebral energy metabolism in the development hepatic encephalopathy (HE) induced by of bile duct ligation (BDL). After four weeks of BDL, a significant increase in hepatic hydroxyproline and collagen content was observed which confirmed biliary fibrosis. Brain regions viz. cortex, hippocampus, striatum and cerebellum of BDL rats had impaired activity of mitochondrial respiratory chain enzymes. This was accompanied by increase in mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl levels in the brain. Mitochondrial redox ratio was significantly reduced in the brain of BDL rats. In addition, mitochondria from brain of BDL rats were depolarized and swollen compared to the sham controls. Ultrastructure analysis of mitochondria from cortex and hippocampus of BDL animals revealed aberrant cristae, ruptured membranes and non-dense matrix. Further, a significant decrease was observed in creatine kinase activity, glucose uptake and CO2 production in the brain regions of BDL rats. ATP/ADP ratio, a critical parameter of cellular energy status, was also significantly reduced in brain regions of rats with HE. Overall, the findings clearly demonstrate that BDL induced HE involves mitochondrial respiratory chain dysfunctions, mitochondrial depolarization and swelling that accentuates oxidative stress which in turn leads to compromise in cerebral energy metabolism thereby contributing to the pathophysiology of chronic HE.


Assuntos
Metabolismo Energético/fisiologia , Encefalopatia Hepática/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Estresse Oxidativo/fisiologia , Ratos Wistar
15.
Neuroscience ; 367: 47-59, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29080716

RESUMO

Ubiquitin-proteasome system (UPS) has emerged as major molecular mechanism which modulates synaptic plasticity. However, very little is known about what happens if this system fails during postnatal brain development. In the present study, MG132 was administered intracerebroventricularly in BALB/c mice pups at postnatal day one (P1), a very crucial period for synaptogenesis. Both 20S proteasome and calpain activities were found to be reduced in the mid brain of MG132-administered pups after 24 h. Mice (P40) which received MG132 on P1 were subjected to Morris water maze (MWM) training. Analysis showed spatial learning and memory of MG132 mice was significantly impaired when compared to age-matched controls. Hematoxylin and eosin as well as Cresyl Violet staining revealed substantial loss of cellular connections, distorted architecture and increased pyknosis in hippocampal CA1 and CA3 regions of MG132 mice. Immunohistochemical analysis of MG132 mice showed increased accumulation of intracellular amyloid-ß in hippocampal cells when compared to control. Moreover, double immunostaining revealed increased expression of amyloid precursor protein C-terminal fragments (APP-CTFß) without affecting ß-secretase expression in MG132 mice. Real-Time PCR analyses showed significant increase in hippocampal expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate A1 (GluA1), but no change in the brain-derived neurotrophic factor (Bdnf) expression in MG132 mice. Western blot analyses showed decreased levels of pThr286-CaMKIIα:CaMKIIα and pSer133-CREB:CREB ratio but increased pro:mature BDNF ratio in the hippocampus of MG132 mice. Taken together, postnatal proteasome inhibition could lead to accumulation of intracellular amyloid-ß protein aggregates, which mediate hippocampus-dependent spatial memory impairments in adult mice.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Deficiências da Aprendizagem/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Aprendizagem Espacial/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Deficiências da Aprendizagem/induzido quimicamente , Leupeptinas/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteassoma/toxicidade , Agregação Patológica de Proteínas/induzido quimicamente , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Aprendizagem Espacial/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(5): 1090-1097, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27794419

RESUMO

Mitochondria are vital organelles involved in numerous cellular functions ranging from energy metabolism to cell survival. Emerging evidence suggests that mitochondria provide a platform for signaling pathways involved in innate immune response. Mitochondrial ROS (mtROS) production, mitochondrial DNA (mtDNA) release, mitochondrial antiviral signaling protein (MAVS) are key triggers in the activation of innate immune response following variety of stress signals that include infection, tissue damage and metabolic dysregulation. The process is mediated through pattern recognition receptors (PRRs) that consist of retinoic acid inducible gene like receptors (RLRs), c-type lectin receptors (CLRs), toll type receptors (TLRs) and nuclear oligomerization-domain like receptors (NLRs). These signals converge to form a multiprotein complex called inflammasome that leads to caspase-1 activation to promote processing of precursor cytokines (pro-IL1ß and pro-IL-18) to active cytokines (IL-1ß and IL-18). It appears that mitochondria induced inflammasome activation contributes to inflammatory process in many diverse disorders. Therefore, strategies aimed at modulating mitochondria mediated inflammasome activation might be beneficial in many pathophysiological conditions. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.


Assuntos
Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Caspase 1/imunologia , Humanos , Inflamassomos/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Precursores de Proteínas/imunologia , Receptores de Reconhecimento de Padrão/imunologia
17.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1858-1866, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27262357

RESUMO

In the previous study, we demonstrated that dichlorvos induces oxidative stress in dopaminergic neuronal cells and subsequent caspase activation mediates apoptosis. In the present study, we evaluated the effect and mechanism of dichlorvos induced oxidative stress on cell cycle activation in NGF-differentiated PC12 cells. Dichlorvos exposure resulted in oxidative DNA damage along with activation of cell cycle machinery in differentiated PC12 cells. Dichlorvos exposed cells exhibited an increased expression of p53, cyclin-D1, pRb and decreased expression of p21suggesting a re-entry of differentiated cells into the cell cycle. Cell cycle analysis of dichlorvos exposed cells revealed a reduction of cells in the G0/G1 phase of the cell cycle (25%), and a concomitant increase of cells in S phase (30%) and G2/M phase (43.3%) compared to control PC12 cells. Further, immunoblotting of cytochrome c, Bax, Bcl-2 and cleaved caspase-3 revealed that dichlorvos induces a caspase-dependent cell death in PC12 cells. These results suggest that Dichlorvos exposure has the potential to generate oxidative stress which evokes activation of cell cycle machinery leading to apoptotic cell death via cytochrome c release from mitochondria and subsequent caspase-3 activation in differentiated PC12 cells.


Assuntos
Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Diclorvós/efeitos adversos , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Intoxicação por Organofosfatos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Diclorvós/farmacologia , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Intoxicação por Organofosfatos/genética , Intoxicação por Organofosfatos/patologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
18.
Mol Neurobiol ; 53(2): 944-954, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575683

RESUMO

Microglia play an important role in synaptic pruning and controlled phagocytosis of neuronal cells during developmental stages. However, the mechanisms that regulate these functions are not completely understood. The present study was designed to investigate the role of purinergic signalling in microglial migration and phagocytic activity during post-natal brain development. One-day-old BALB/c mice received lipopolysaccharide (LPS) and/or a purinergic analogue (2-methylthioladenosine-5'-diphosphate; 2MeSADP), intracerebroventrically (i.c.v.). Combined administration of LPS and 2MeSADP resulted in activation of microglia as evident from increased expression of ionised calcium-binding adapter molecule 1 (Iba1). Activated microglia showed increased expression of purinergic receptors (P2Y2, P2Y6 and P2Y12). LPS either alone or in combination with 2MeSADP induced the expression of Na(+)/Ca(2+) exchanger (NCX-1) and P/Q-type Ca(2+) channels along with MARCKS-related protein (MRP), which is an integral component of cell migration machinery. In addition, LPS and 2MeSADP administration induced the expression of microglial CD11b and DAP12 (DNAX-activation protein 12), which are known to be involved in phagocytosis of neurons during development. Interestingly, administration of thapsigargin (TG), a specific Ca(2+)-ATPase inhibitor of endoplasmic reticulum, prevented the LPS/2MeSADP-induced microglial activation and migration by down-regulating the expression of Iba1 and MRP, respectively. Moreover, TG also reduced the LPS/2MeSADP-induced expression of CD11b/DAP12. Taken together, the findings reveal for the first time that Ca(2+)-mediated purinergic receptors regulate the migration and phagocytic ability of microglia during post-natal brain development.


Assuntos
Cálcio/metabolismo , Movimento Celular , Microglia/citologia , Microglia/metabolismo , Fagocitose , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Antígeno CD11b/metabolismo , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Espaço Intracelular/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Modelos Biológicos , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
J Biomol Struct Dyn ; 34(5): 993-1007, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26108947

RESUMO

Glyoxalase-I (GLO-I) is a component of the ubiquitous detoxification system involved in the conversion of methylglyoxal (MG) to d-lactate in the glycolytic pathway. MG toxicity arises from its ability to form advanced glycation end products. GLO-I has been reported to be frequently overexpressed in various types of cancer cells. In this study, we performed structure-based virtual screening of focused flavonoids commercial library to identify potential and specific inhibitors of GLO-I. The compounds were ranked based on Glide extra precision docking score and five hits (curcumin, quercetin, morin, naringin and silibinin) were selected on the basis of their interaction with active site amino acid residues of GLO-I. Mixed mode QM/MM calculation was performed on the top-scoring hit to ascertain the role of zinc ion in ligand binding. In addition, the identified hits were subjected to MM/GBSA binding energy prediction, ADME prediction and similarity studies. The hits were tested in vitro for cell viability, and GLO-I inhibition. Naringin (ST072162) was found to be most potent inhibitor of GLO-I among the identified hits with highest glide XP dock score of -14.906. These findings suggest that naringin could be a new scaffold for designing inhibitors against GLO-I with potential application as anticancer agents.


Assuntos
Inibidores Enzimáticos/química , Flavonoides/química , Lactoilglutationa Liase/química , Modelos Moleculares , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Ligação de Hidrogênio , Técnicas In Vitro , Lactoilglutationa Liase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
20.
Neurotoxicology ; 51: 116-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493151

RESUMO

The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.


Assuntos
Alumínio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/administração & dosagem , Fatores de Transcrição/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Encéfalo/enzimologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/metabolismo , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...