Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rev Mar Sci ; 16: 487-511, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231736

RESUMO

Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.


Assuntos
Baías , Ecossistema , Bahamas , Evolução Biológica , Sedimentos Geológicos
2.
Sci Rep ; 12(1): 12902, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902605

RESUMO

Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic. Recent investigations reveal that Hamelin Pool, located in Shark Bay, Western Australia, is a microbial carbonate factory that provides a modern analog for the microbialite-micritic sediment facies associations that are so prevalent in the geologic record. Hamelin Pool contains the largest known living marine stromatolite system in the world. Although best known for the constructive microbial processes that lead to formation of these stromatolites, our comprehensive mapping has revealed that erosion and degradation of weakly lithified microbial mats in Hamelin Pool leads to the extensive production and accumulation of sand-sized micritic grains. Over 40 km2 of upper intertidal shoreline in the pool contain unlithified to weakly lithified microbial pustular sheet mats, which erode to release irregular peloidal grains. In addition, over 20 km2 of gelatinous microbial mats, with thin brittle layers of micrite, colonize subtidal pavements. When these gelatinous mats erode, the micritic layers break down to form platey, micritic intraclasts with irregular boundaries. Together, the irregular micritic grains from pustular sheet mats and gelatinous pavement mats make up nearly 26% of the total sediment in the pool, plausibly producing ~ 24,000 metric tons of microbial sediment per year. As such, Hamelin Pool can be seen as a microbial carbonate factory, with construction by lithifying microbial mats forming microbialites, and erosion and degradation of weakly lithified microbial mats resulting in extensive production of sand-sized micritic sediments. Insight from these modern examples may have direct applicability for recognition of sedimentary deposits of microbial origin in the geologic record.


Assuntos
Sedimentos Geológicos , Tubarões , Animais , Baías , Carbonatos , Areia , Austrália Ocidental
3.
Sci Total Environ ; 836: 155378, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35489513

RESUMO

Despite the harsh environmental conditions in the world's oldest and driest desert, some salt flat or 'salar' environments in the Atacama Desert host standing bodies of water known as saline lakes. Evaporite minerals deposited within saline lakes result from the equilibrium of environmental, sedimentological, and biogeochemical processes that occur in the salar; consequently, these minerals are sensitive records of human activities and ecological, evolutionary, and geological changes. The objective of this study was to evaluate feedbacks between physical, chemical, and microbial processes that culminate in distinct trends in brine chemistry, saline lake morphology, and associated evaporite sediments. Using samples from the Puquios of the Salar de Llamara, Atacama Desert, northern Chile, an analysis of spatial gradients and vertical stratification of lake elemental chemistry and mineral saturation indices were integrated with a comprehensive analysis of lake morphology, including depth, slope gradient, substrate type, and mineralogy. Lake waters ranged from saline to hypersaline, and exhibited normal, well mixed and inverse stratification patterns, and results suggest a correlation with lake morphology in the Salar de Llamara. Saline to hypersaline lakes (>150 mS/cm) with stratified brines tended to have crystalline substrate and deep (>35 cm) and steep-sided lake morphologies, while unstratified lakes with lower electrical conductivity (<90 mS/cm and microbial substrates had gentle slopes and characteristically shallow depths (<30 cm). Differences in minor element chemistry (Mn and Sr) between saline lakes were observed on scales of meters to kilometers, and result in different accessory mineral assemblages. Quantification of the physical, chemical, and microbial feedbacks that produce the observed heterogeneity in these ecosystems provides key insight into the geochemical composition and lake morphology of saline lakes in extreme environments around the world.


Assuntos
Ecossistema , Lagos , Retroalimentação , Humanos , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...