Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanotechnology ; 20(20): 204026, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19420674

RESUMO

It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.


Assuntos
Carbono/química , Cristalização/métodos , Hidrogênio/química , Hidrogênio/isolamento & purificação , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
Cryobiology ; 47(2): 93-101, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14580844

RESUMO

The impact of high pressure and freezing on survivability of Escherichia coli and human red blood cells was evaluated to determine the utility of high-pressure transitions for preserving living cells. Based on microscopy and survivability, high pressures did not directly impact physical damage to living cells. E. coli studies showed that increased cell death is due to indirect phenomena with decreasing survivability at increasingly high pressures and exposure times. Pressurization rates up to 1.4kbar/min had negligible effects relative to exposures of >5min at high pressures.Both glycine and control of pH near 7.0 were successful in reducing the adverse impacts of high pressure. Survivability increased from <1% at 5min exposure to 2.1kbar of pressure to typical values >20%. The combination of glycine and the buffer salt led to even further improvements in survivability. Pressure changes were used to traverse temperature and pressures consistent with Ice I and Ice III phase boundaries of pure water.


Assuntos
Criopreservação/métodos , Eritrócitos/citologia , Escherichia coli/citologia , Congelamento , Soluções Tampão , Sobrevivência Celular , Temperatura Baixa , Eritrócitos/fisiologia , Escherichia coli/fisiologia , Glicina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Gelo , Pressão , Sais/farmacologia , Temperatura , Fatores de Tempo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...