Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33806-33818, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902951

RESUMO

The remarkable applicability and unique properties of CdTe nanoparticles make them vital in various applications such as optoelectronics and photovoltaics. It has been demonstrated that adding a metal dopant to a nanomaterial matrix significantly improves its characteristics, increasing its potential for a variety of applications. In this work, a simple hydrothermal synthesis process for bidoped CdTe nanoparticles is reported, wherein four distinct samples are generated by adjusting the concentration of Bi doping. Structural analysis using X-ray diffraction (XRD) confirmed the presence of the CdTe cubic phase in the material with observable phase shifts due to Bi incorporation. Rietveld refinement of the XRD results further enabled a detailed structural analysis. Raman spectroscopy provided insights into the different vibrational modes of CdTe, while transmission electron microscopy analysis further elucidated the CdTe phase and determined interplanar spacing values. Morphological examination via field emission scanning electron microscopy revealed a consistent nanoparticle-like morphology, unaffected even by increased Bi concentration. Elemental analysis conducted through inductively coupled plasma mass spectrometry offered valuable insights into the composition of the material. Furthermore, UV-vis analysis revealed a decrease in the bandgap, indicating potential shifts in the material's optical properties. Notably, the photoresponse study demonstrated an increase in current value, as well as alterations in the rise and decay times of the material. These properties highlight its potential for various optical and electrical applications. Overall, these findings underscore the promising prospects of bidoped CdTe nanoparticles in various advancements.

2.
Nanoscale ; 16(15): 7566-7581, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501979

RESUMO

In the realm of nanomaterial research, copper telluride and cobalt telluride have individually attracted considerable attention owing to their unique properties and potential applications. However, there exists a notable gap in the literature when it comes to the exploration of composite materials derived from these elements. From this point of view, a ternary CuCoTe nanocomposite was prepared using the microwave synthesis method. Various characterizations were performed by varying the power and irradiation time. X-Ray diffraction study and transmission electron microscopy analysis confirmed the polycrystalline nature of the material with Cu2Te and CoTe hexagonal phases. Field emission scanning electron microscopy images reveal nanoparticle-like morphology, which remains unchanged even when the time of irradiation increases. In addition, the nanoparticle size of the material lies in the range of 30-39 nm. The differential scanning calorimetry inferred various exothermic and endothermic peaks. Meanwhile, the optical analysis from the UV-visible study shows the red-shifted absorbance, enabling the material for semiconductor and photovoltaic devices. Furthermore, the optical bandgap of the material varies in the range from 2.45 to 3.61 eV, which reveals the tuneable bandgap desiring the material for various optoelectronic applications. The frequency-temperature-dependent dielectric study gives results for dielectric parameters, conductivity, and impedance behaviour. The material's dielectric constant, dielectric loss, and AC conductivity enhance with the increase in temperature. This behaviour of the material broadens the area of applicability in energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...