Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 47(2): 822-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148453

RESUMO

Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.


Assuntos
Dano ao DNA , Microglia , Nucleotidiltransferases , Humanos , Dano ao DNA/genética , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Estresse Oxidativo
2.
Front Immunol ; 14: 1130172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999037

RESUMO

Genomic instability is a key driving force for the development and progression of many neurodegenerative diseases and central nervous system (CNS) cancers. The initiation of DNA damage responses is a critical step in maintaining genomic integrity and preventing such diseases. However, the absence of these responses or their inability to repair genomic or mitochondrial DNA damage resulting from insults, including ionizing radiation or oxidative stress, can lead to an accumulation of self-DNA in the cytoplasm. Resident CNS cells, such as astrocytes and microglia, are known to produce critical immune mediators following CNS infection due to the recognition of pathogen and damage-associated molecular patterns by specialized pattern recognition receptors (PRRs). Recently, multiple intracellular PRRs, including cyclic GMP-AMP synthase, interferon gamma-inducible 16, absent in melanoma 2, and Z-DNA binding protein, have been identified as cytosolic DNA sensors and to play critical roles in glial immune responses to infectious agents. Intriguingly, these nucleic acid sensors have recently been shown to recognize endogenous DNA and trigger immune responses in peripheral cell types. In the present review, we discuss the available evidence that cytosolic DNA sensors are expressed by resident CNS cells and can mediate their responses to the presence of self-DNA. Furthermore, we discuss the potential for glial DNA sensor-mediated responses to provide protection against tumorigenesis versus the initiation of potentially detrimental neuroinflammation that could initiate or foster the development of neurodegenerative disorders. Determining the mechanisms that underlie the detection of cytosolic DNA by glia and the relative role of each pathway in the context of specific CNS disorders and their stages may prove pivotal in our understanding of the pathogenesis of such conditions and might be leveraged to develop new treatment modalities.


Assuntos
Neuroglia , Ácidos Nucleicos , Neuroglia/metabolismo , DNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Microglia/metabolismo
3.
J Neuroinflammation ; 19(1): 109, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549723

RESUMO

BACKGROUND: The mechanisms by which glia respond to viral central nervous system (CNS) pathogens are now becoming apparent with the demonstration that microglia and astrocytes express an array of pattern recognition receptors that include intracellular RNA and DNA sensors. We have previously demonstrated that glia express Z-DNA binding protein 1 (ZBP1) and showed that this cytosolic nucleic acid sensor contributes to the inflammatory/neurotoxic responses of these cells to herpes simplex virus-1 (HSV-1). However, the relative contribution made by ZBP1- to HSV-1-mediated cell death in glia has not been determined. METHODS: We have investigated the relative contribution made by ZBP1- to HSV-1-mediated cell death in primary astrocytes derived from mice genetically deficient in this sensor. We have used capture ELISAs and immunoblot analysis to assess inflammatory cytokine production and ZBP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL) expression levels, respectively, following HSV-1 challenge. Furthermore, we have used a commercially available cell viability assay to determine the proportion and rate of cell death in cells following infection with laboratory and neuroinvasive clinical strains of HSV-1, and pharmacological inhibitors of necroptotic and apoptotic pathway components to assess the relative role of each. RESULTS: We show that the loss of ZBP1 in astrocytes results in an increase in the number of viral particles released following HSV-1 infection. Importantly, we have confirmed that HSV-1 induces necroptosis in astrocytes and have established the ability of ZBP1 to mediate this cell death pathway. Interestingly, while ZBP1 is best known for its role in necroptotic signaling, our findings indicate that this sensor can also contribute to virally induced apoptosis in these glia. CONCLUSIONS: Our findings indicate that ZBP1 serves as a restriction factor for HSV-1 infection and is associated with the induction of both necroptotic and apoptotic cell death pathways in primary murine astrocytes. While it remains to be seen whether ZBP1-mediated activation of cell death in astrocytes contributes significantly to host protection or, rather, exacerbates HSV-1 encephalitis pathology, the identification of such a role in resident CNS cells may represent a novel target for therapeutic intervention to reduce HSV encephalitis-associated morbidity and mortality.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Animais , Apoptose , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...