Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Struct ; 55(6): 153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789561

RESUMO

In cold regions, calcium and magnesium chloride deicing salts damage concrete pavements due to the formation of certain deleterious chemical phases, including calcium oxychloride. While there is much research at a cement paste-scale, damage in concrete has been less studied. In this study, we evaluate concrete damage due to calcium and magnesium chloride and explain the roles of supplementary cementitious materials (SCM) replacement level, air entrainment, salt type, and exposure conditions in damage development. Various non-destructive test methods including bulk resistivity, mass change, and visual damage assessment were used to monitor the damage over time. Damage was reduced as the SCM replacement level and air content increased, regardless of exposure conditions. Bulk resistivity and visual assessment were promising indicators of damage. The product of 91-day bulk resistivity and the air content predicted concrete performance when exposed to concentrated deicing salts. Based on several criteria, mixtures with 20% fly ash replacement level or 35% slag mitigated damage significantly when the air content was greater than 5% by concrete volume. Damage mitigation mechanisms of SCM and air are discussed. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-01992-y.

2.
Materials (Basel) ; 13(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352908

RESUMO

For geopolymers (usually composed of unreacted precursor and gel), the compressive strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second factor is the gel composition, generally given by the Si/Al ratio. These two parameters are interrelated for typical silicate-activated metakaolin geopolymers. By separating out effects of Si/Al ratio and degree of reaction, this study quantitatively correlates the degree of reaction with the compressive strength of metakaolin-based geopolymers with and without calcium. Solid-state 29Si nuclear magnetic resonance (NMR) aided with chemical extractions was used to determine gel amounts and composition for several geopolymer mixtures. The compressive strength was also measured for each mixture at 7 days. Both the increase of Na/Al ratio in mixtures without calcium and addition of external calcium increased the degree of reaction, and compressive strength correlated linearly (R2 > 0.88) with the degree of reaction.

3.
Materials (Basel) ; 12(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897758

RESUMO

Municipal solid waste incineration fly ash (MSWIFA) is a hazardous by-product of waste incineration. The objective of this research is to encapsulate the chloride in MSWIFA and to develop a utilizable construction material using MSWIFA, ground granulated blast-furnace slag (GGBFS), ladle furnace slag (LFS), and gypsum. A secondary objective of the work is to explain the hydration and encapsulation mechanisms in this material system using isothermal calorimetry (IC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and ion chromatography (IC). The predominant hydration products are ettringite, Friedel's salt, and C-S-H gel, with Friedel's salt and C-S-H dominating in systems high in LFS and ettringite and C-S-H gel dominating in systems low in LFS. The chloride encapsulation showed a strong correlation with the Friedel's salt amount; however, some encapsulation was also likely due to physical binding in the C-S-H gel. In a system with 30% MSWIFA (by mass), the optimal amount of LFS for strength and chloride encapsulation is 20%⁻40% (by mass).

4.
J Vis Exp ; (139)2018 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-30295661

RESUMO

The goal of this method is to determine the chemical composition and electrical resistivity of cementitious pore solution expressed from a fresh paste sample. The pore solution is expressed from a fresh paste sample using a pressurized nitrogen gas system. The pore solution is then immediately transferred to a syringe to minimize evaporation and carbonation. After that, assembled testing containers are used for the X-ray fluorescence (XRF) measurement. These containers consist of two concentric plastic cylinders and a polypropylene film which seals one of the two open sides. The pore solution is added into the container immediately prior to the XRF measurement. The XRF is calibrated to detect the main ionic species in the pore solution, in particular, sodium (Na+), potassium (K+), calcium (Ca2+), and sulfide (S2-), to calculate sulfate (SO42-) using stoichiometry. The hydroxides (OH-) can be calculated from a charge balance. To calculate the electrical resistivity of the solution, the concentrations of the main ionic species and a model by Snyder et al. are used. The electrical resistivity of the pore solution can be used, along with the electrical resistivity of concrete, to determine the formation factor of concrete. XRF is a potential alternative to current methods to determine the composition of pore solution, which can provide benefits in terms of reduction in time and costs.

5.
Materials (Basel) ; 11(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262797

RESUMO

Blast furnace slag (SL) is an amorphous calcium aluminosilicate material that exhibits both pozzolanic and latent hydraulic activities. It has been successfully used to reduce the heat of hydration in mass concrete. However, SL currently available in the market generally experiences pre-treatment to increase its reactivity to be closer to that of portland cement. Therefore, using such pre-treated SL may not be applicable for reducing the heat of hydration in mass concrete. In this work, the adiabatic and semi-adiabatic temperature rise of concretes with 20% and 40% SL (mass replacement of cement) containing calcium sulfate were investigated. Isothermal calorimetry and thermal analysis (TGA) were used to study the hydration kinetics of cement paste at 23 and 50 °C. Results were compared with those with control cement and 20% replacements of silica fume, fly ash, and metakaolin. Results obtained from adiabatic calorimetry and isothermal calorimetry testing showed that the concrete with SL had somewhat higher maximum temperature rise and heat release compared to other materials, regardless of SL replacement levels. However, there was a delay in time to reach maximum temperature with increasing SL replacement level. At 50 °C, a significant acceleration was observed for SL, which is more likely related to the pozzolanic reaction than the hydraulic reaction. Semi-adiabatic calorimetry did not show a greater temperature rise for the SL compared to other materials; the differences in results between semi-adiabatic and adiabatic calorimetry are important and should be noted. Based on these results, it is concluded that the use of blast furnace slag should be carefully considered if used for mass concrete applications.

6.
Polymers (Basel) ; 9(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30965728

RESUMO

Recent research has shown that cellulose nanocrystals (CNCs) can be used at low dosage levels (approximately 0.2% by volume of cement) to increase the extent of hydration and to improve the flexural strength of cement pastes. However, the previous work was based on using a CNC made from a single source material and processing technique and was performed using only Type V cement. This work examines the influence of various raw material sources and processing techniques used to make the CNCs. In total, nine different CNCs were investigated with pastes made using Type I/II and Type V cements. Isothermal calorimetry (IC), thermogravimetric analysis (TGA) and ball-on-three-ball (B3B) flexural strength testing were used to quantify the performance of CNC-cement composites. IC and TGA results showed that CNCs increased the degree of hydration in all systems. IC results showed that the increase in total heat release was greater in the Type V than in the Type I/II cement paste systems. B3B flexural testing indicated an increase in flexural strength of up to 20% with both Type I/II and Type V systems. These results also showed that the performance of CNC-cement composites can be affected by the source and manufacturing process used to make the CNC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...