Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 220(Pt 10): 1774-1780, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254879

RESUMO

Recognizing a deadly pathogen and generating an appropriate immune reaction is essential for any organism to survive in its natural habitat. Unlike vertebrates and higher primates, invertebrates depend solely on the innate immune system to defend themselves from an attacking pathogen. In this study, we report a behavioral defense strategy observed in Drosophila larvae that helps them escape and limit an otherwise lethal infection. A bacterial infection in the gut is sensed by the larval central nervous system, which generates an alteration in the larva's food preference, leading it to stop feeding and move away from the infectious food source. We have also found that this behavioral response is dependent on the internal nutritive state of the larvae. Using this novel behavioral assay as a read-out, we further identified hugin neuropeptide to be involved in the evasion response and detection of bacterial signals.


Assuntos
Drosophila melanogaster/microbiologia , Comportamento Alimentar , Animais , Proteínas de Drosophila/metabolismo , Preferências Alimentares , Comportamento de Doença , Larva/microbiologia , Locomoção , Neuropeptídeos/metabolismo , Pseudomonas/genética , Infecções por Pseudomonas , Inanição
2.
J Insect Physiol ; 69: 118-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907674

RESUMO

The enteric nervous system is critical for coordinating diverse feeding-related behaviors and metabolism. We have characterized a cluster of four serotonergic neurons in Drosophila larval brain: cell bodies are located in the subesophageal ganglion (SOG) whose neuronal processes project into the enteric nervous system. Electrophysiological, calcium imaging and behavioral analyses indicate a functional role of these neurons in modulating foregut motility. We suggest that the axonal projections of this serotonergic cluster may be part of a brain-gut neural pathway that is functionally analogous to the vertebrate vagus nerve.


Assuntos
Drosophila/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal , Técnicas In Vitro , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...