Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Appl Microbiol ; 98: 1-29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28189153

RESUMO

Probiotics are nonpathogenic microorganisms that confer a health benefit on the host when administered in adequate amounts. Ample evidence is documented to support the potential application of probiotics for the prevention and treatment of infections. Health benefits of probiotics include prevention of diarrhea, including antibiotic-associated diarrhea and traveler's diarrhea, atopic eczema, dental carries, colorectal cancers, and treatment of inflammatory bowel disease. The cumulative body of scientific evidence that demonstrates the beneficial effects of probiotics on health and disease prevention has made probiotics increasingly important as a part of human nutrition and led to a surge in the demand for probiotics in clinical applications and as functional foods. The ability of probiotics to promote health is attributed to the various beneficial effects exerted by these microorganisms on the host. These include lactose metabolism and food digestion, production of antimicrobial peptides and control of enteric infections, anticarcinogenic properties, immunologic enhancement, enhancement of short-chain fatty acid production, antiatherogenic and cholesterol-lowering attributes, regulatory role in allergy, protection against vaginal or urinary tract infections, increased nutritional value, maintenance of epithelial integrity and barrier, stimulation of repair mechanism in cells, and maintenance and reestablishment of well-balanced indigenous intestinal and respiratory microbial communities. Most of these attributes primarily focus on the effect of probiotic supplementation on the host. Hence, in most cases, it can be concluded that the ability of a probiotic to protect the host from infection is an indirect result of promoting overall health and well-being. However, probiotics also exert a direct effect on invading microorganisms. The direct modes of action resulting in the elimination of pathogens include inhibition of pathogen replication by producing antimicrobial substances like bacteriocins, competition for limiting resources in the host, antitoxin effect, inhibition of virulence, antiadhesive and antiinvasive effects, and competitive exclusion by competition for binding sites or stimulation of epithelial barrier function. Although much has been documented about the ability of probiotics to promote host health, there is limited discussion on the above mentioned effects of probiotics on pathogens. Being in an era of antibiotic resistance, a better understanding of this complex probiotic-pathogen interaction is critical for development of effective strategies to control infections. Therefore, this chapter will focus on the ability of probiotics to directly modulate the infectious nature of pathogens and the underlying mechanisms that mediate these effects.


Assuntos
Tratamento Farmacológico , Microbioma Gastrointestinal , Lactobacillaceae/fisiologia , Probióticos/administração & dosagem , Animais , Trato Gastrointestinal/microbiologia , Humanos , Intestinos/microbiologia , Lactobacillaceae/patogenicidade
2.
Poult Sci ; 95(9): 2106-11, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252373

RESUMO

Salmonella enteritidis (SE) is a major foodborne pathogen that causes human infections largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with SE from multiple sources, highlighting the need for effective egg surface disinfection methods. This study investigated the efficacy of three GRAS-status, phytochemicals, namely carvacrol (CR), eugenol (EG), and ß-resorcylic acid (BR) applied as pectin or gum arabic based coating for reducing SE on shell eggs. White-shelled eggs, spot inoculated with a 5-strain mixture of nalidixic acid (NA) resistant SE (8.0 log CFU/mL) were coated with pectin or gum arabic solution containing each phytochemical (0.0, 0.25, 0.5, or 0.75%), and stored at 4°C for 7 days. SE on eggs was enumerated on days 0, 1, 3, and 7 of storage. Approximately 4.0 log CFU/egg of SE was recovered from inoculated and pectin or gum arabic coated eggs on day 0. All coating treatments containing CR and EG, and BR at 0.75% reduced SE to undetectable levels on day 3 (P < 0.05). Results suggest that the aforementioned phytochemicals could effectively be used as a coating to reduce SE on shell eggs, but detailed studies on the sensory and quality attributes of coated eggs need to be conducted before recommending their use.


Assuntos
Antibacterianos/farmacologia , Galinhas , Casca de Ovo/microbiologia , Viabilidade Microbiana , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enteritidis/efeitos dos fármacos , Animais , Cimenos , Eugenol/farmacologia , Goma Arábica/química , Hidroxibenzoatos/farmacologia , Monoterpenos/farmacologia , Pectinas/química , Compostos Fitoquímicos/farmacologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...