Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(16): 5865-5880, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34232330

RESUMO

Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organisms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such as Drosophila melanogaster, where other common tools are less effective or unavailable.


Assuntos
Drosophila melanogaster/genética , Homeostase/genética , Regeneração/genética , Animais , Humanos , Optogenética/métodos , Transdução de Sinais/genética , Células-Tronco/fisiologia , Cicatrização/genética
2.
FEBS J ; 288(12): 3855-3873, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32853472

RESUMO

'A peculiar severe disease process of the cerebral cortex' are the exact words used by A. Alzheimer in 1906 to describe a patient's increasingly severe condition of memory loss, changes in personality, and sleep disturbance. A century later, this 'peculiar' disease has become widely known as Alzheimer's disease (AD), the world's most common neurodegenerative disease, affecting more than 35 million people globally. At the same time, its pathology remains unclear and no successful treatment exists. Several theories for AD etiology have emerged throughout the past century. In this review, we focus on the metabolic mechanisms that are similar between AD and metabolic diseases, based on the results from genome-wide association studies. We discuss signaling pathways involved in both types of disease and look into new optogenetic methods to study the in vivo mechanisms of AD.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Metformina/uso terapêutico , Optogenética/métodos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/uso terapêutico , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Cells ; 8(8)2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382613

RESUMO

Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Via de Sinalização Wnt , Desenvolvimento Embrionário/fisiologia , Humanos
4.
Sci Rep ; 7(1): 11092, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894169

RESUMO

During animal development, complex signals determine and organize a vast number of tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a ß-catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that can be used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find specific sets of genes downstream of both ß-catenin and TCF with an additional group of genes regulated by Wnt, while the non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ativação Transcricional , Proteínas Wnt/metabolismo , Animais , Apoptose , Biologia Computacional/métodos , Drosophila/embriologia , Drosophila/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Mutação , Fenótipo , Ligação Proteica , Transcriptoma , Via de Sinalização Wnt
5.
Sci Rep ; 7(1): 6934, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761148

RESUMO

The highly conserved Wnt signaling pathway regulates cell proliferation and differentiation in vertebrates and invertebrates. Upon binding of a Wnt ligand to a receptor of the Fz family, Disheveled (Dsh/Dvl) transduces the signal during canonical and non-canonical Wnt signaling. The specific details of how this process occurs have proven difficult to study, especially as Dsh appears to function as a switch between different branches of Wnt signaling. Here we focus on the membrane-proximal events that occur once Dsh is recruited to the membrane. We show that membrane-tethering of the Dsh protein is sufficient to induce canonical Wnt signaling activation even in the absence of the Wnt co-receptor Arrow/LRP5/6. We map the protein domains required for pathway activation in membrane tethered constructs finding that both the DEP and PDZ domains are dispensable for canonical signaling only in membrane-tethered Dsh, but not in untethered/normal Dsh. These data lead to a signal activation model, where Arrow is required to localize Dsh to the membrane during canonical Wnt signaling placing Dsh downstream of Arrow.


Assuntos
Membrana Celular/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Sítios de Ligação , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/genética , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...