Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 73(3): 1023-1033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884462

RESUMO

BACKGROUND: 2-(4'- [11C]Methylaminophenyl)-6-hydroxybenzothiazole ([11C]-PiB), purportedly a specific imaging agent for cerebral amyloid-ß plaques, is a specific, high affinity substrate for estrogen sulfotransferase (SULT1E1), an enzyme that regulates estrogen homeostasis. OBJECTIVE: In this work, we use positron emission tomography (PET) imaging with [11C]-PiB to assess the functional activity of SULT1E1 in the brain of moyamoya disease patients. METHODS: Ten moyamoya subjects and five control patients were evaluated with [11C]-PiB PET and structural MRI scans. Additionally, a patient with relapsing-remitting multiple sclerosis (RRMS) received [11C]-PiB PET scans before and after steroidal and immunomodulatory therapy. Parametric PET images were established to assess SULT1E1 distribution in the inflamed brain tissue. RESULTS: Increased [11C]-PiB SRTM DVR in the thalamus, pons, corona radiata, and internal capsule of moyamoya cohort subjects was observed in comparison with controls (p ≤ 0.01). This was observed in patients without treatment, with collateralization, and also after radiation. The post-treatment [11C]-PiB PET scan in one RRMS patient also revealed substantially reduced subcortical brain inflammation. In validation studies, [11C]-PiB autoradiography signal in the peri-infarct area of the rat middle cerebral arterial occlusion stroke model was shown to correlate with SULT1E1 immunohistochemistry. CONCLUSION: Strong [11C]-PiB PET signal associated with intracranial inflammation in the moyamoya syndrome cohort and a single RRMS patient appears consistent with functional imaging of SULT1E1 activity in the human brain. This preliminary work offers substantial and direct evidence that significant [11C]-PiB PET focal signals can be obtained from the living human brain with intracranial inflammation, signals not attributable to amyloid-ß plaques.


Assuntos
Encéfalo/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Doença de Moyamoya/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Sulfotransferases/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Radioisótopos de Carbono , Feminino , Humanos , Inflamação/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/metabolismo
2.
Transl Oncol ; 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24836647

RESUMO

OBJECTIVES: To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. METHODS: Pancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25mg/kg), radiation (5Gy), both, or no treatment. Mice were monitored with bioluminescence imaging. RESULTS: In vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8days (P < .01). Co-treatment with 5Gy and 1, 10 or 100µmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 µmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39days, and survival at 60days of 0%, 0% and 40%, respectively. CONCLUSIONS: ABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...