Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1024, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471213

RESUMO

It is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator-stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor.


Assuntos
Actinas/metabolismo , Archaea/genética , Peptídeos/metabolismo , Profilinas/genética , Archaea/metabolismo , Profilinas/metabolismo , Ligação Proteica
2.
Sci Rep ; 10(1): 15867, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985518

RESUMO

The origin of the eukaryotic cell is an unsettled scientific question. The Asgard superphylum has emerged as a compelling target for studying eukaryogenesis due to the previously unseen diversity of eukaryotic signature proteins. However, our knowledge about these proteins is still relegated to metagenomic data and very little is known about their structural properties. Additionally, it is still unclear if these proteins are functionally homologous to their eukaryotic counterparts. Here, we expressed, purified and structurally characterized profilin from Heimdallarchaeota in the Asgard superphylum. The structural analysis shows that while this profilin possesses similar secondary structural elements as eukaryotic profilin, it contains additional secondary structural elements that could be critical for its function and an indication of divergent evolution.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ressonância Magnética Nuclear Biomolecular , Profilinas/química , Profilinas/metabolismo , Discalculia
3.
J Biol Chem ; 292(35): 14636-14648, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710278

RESUMO

The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser256, Ser261, Ser264, and Thr269), of which Ser256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications.


Assuntos
Aquaporina 2/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Regulação Alostérica , Substituição de Aminoácidos , Aquaporina 2/química , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Deleção de Genes , Humanos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Pichia/enzimologia , Pichia/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Temperatura de Transição
4.
Front Plant Sci ; 7: 1888, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003817

RESUMO

[This corrects the article on p. 1249 in vol. 7, PMID: 27625657.].

5.
J Biol Chem ; 291(52): 26899-26912, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27875296

RESUMO

Temperature sensors are crucial for animals to optimize living conditions. The temperature response of the ion channel transient receptor potential A1 (TRPA1) is intriguing; some orthologs have been reported to be activated by cold and others by heat, but the molecular mechanisms responsible for its activation remain elusive. Single-channel electrophysiological recordings of heterologously expressed and purified Anopheles gambiae TRPA1 (AgTRPA1), with and without the N-terminal ankyrin repeat domain, demonstrate that both proteins are functional because they responded to the electrophilic compounds allyl isothiocyanate and cinnamaldehyde as well as heat. The proteins' similar intrinsic fluorescence properties and corresponding quenching when activated by allyl isothiocyanate or heat suggest lipid bilayer-independent conformational changes outside the N-terminal domain. The results show that AgTRPA1 is an inherent thermo- and chemoreceptor, and analogous to what has been reported for the human TRPA1 ortholog, the N-terminal domain may tune the response but is not required for the activation by these stimuli.


Assuntos
Repetição de Anquirina , Culicidae/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Temperatura Baixa , Cristalografia por Raios X , Temperatura Alta , Humanos , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório/isolamento & purificação
6.
Front Plant Sci ; 7: 1249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625657

RESUMO

Aquaporins (AQPs) also referred to as Major intrinsic proteins, regulate permeability of biological membranes for water and other uncharged small polar molecules. Plants encode more AQPs than other organisms and just one of the four AQP subfamilies in Arabidopsis thaliana, the water specific plasma membrane intrinsic proteins (PIPs), has 13 isoforms, the same number as the total AQPs encoded by the entire human genome. The PIPs are more conserved than other plant AQPs and here we demonstrate that a cysteine residue, in loop A of SoPIP2;1 from Spinacia oleracea, is forming disulfide bridges. This is in agreement with studies on maize PIPs, but in contrast we also show an increased permeability of mutants with a substitution at this position. In accordance with earlier findings, we confirm that mercury increases water permeability of both wild type and mutant proteins. We report on the slow kinetics and reversibility of the activation, and on quenching of intrinsic tryptophan fluorescence as a potential reporter of conformational changes associated with activation. Hence, previous studies in plants based on the assumption of mercury as a general AQP blocker have to be reevaluated, whereas mercury and fluorescence studies of isolated PIPs provide new means to follow structural changes dynamically.

7.
Proc Natl Acad Sci U S A ; 111(47): 16901-6, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25389312

RESUMO

We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ(9)-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1-688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca(2+), or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).


Assuntos
Repetição de Anquirina , Canais de Cálcio/fisiologia , Temperatura Baixa , Proteínas do Tecido Nervoso/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Canais de Cálcio/química , Humanos , Proteínas do Tecido Nervoso/química , Técnicas de Patch-Clamp , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química
8.
PLoS One ; 6(2): e14674, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21339815

RESUMO

BACKGROUND: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. METHODOLOGY/PRINCIPAL FINDING: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-ß-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. CONCLUSION/SIGNIFICANCE: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Membrana Celular/fisiologia , Detergentes/farmacologia , Lipídeos de Membrana/farmacologia , Spinacia oleracea/química , Aquaporinas/análise , Aquaporinas/efeitos dos fármacos , Dicroísmo Circular , Micelas , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Proteolipídeos/farmacologia , Proteolipídeos/fisiologia , Spinacia oleracea/metabolismo , Relação Estrutura-Atividade , Temperatura
9.
Nucleic Acids Symp Ser (Oxf) ; (52): 489-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776467

RESUMO

Deoxyribonucleoside kinases catalyze the rate limiting step during the salvage of deoxyribonucleosides and convert them into the corresponding monophosphate compounds. We have identified and characterized a unique multisubstrate deoxyribonucleoside kinase from plants. The phylogenetic relationship and biochemical properties suggest that this deoxyribonucleoside kinase represents a living fossil resembling the progenitor of the modern animal deoxycytidine, deoxyguanosine and thymidine 2 kinases. The broad substrate specificity makes this enzyme an interesting candidate to be evaluated as a suicide gene in anti-cancer therapy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...