Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(33): 30508-30518, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636980

RESUMO

We report citrate gel-assisted autocombusted spinel-type Co2+-substituted NiCuZn ferrites and their electromagnetic properties. Several complementary techniques were used to investigate the influence of Co on structural and electromagnetic properties of Ni0.25-xCoxCu0.20Zn0.55Fe2O4 with x = 0.00-0.25 (step of 0.05). XRD analysis confirmed the highly crystalline single-phase cubic spinel structure with a prominent peak of the (311) plane. FE-SEM analysis showed the loss of porous gel structure (colloidal backbone) due to addition of cobalt into the present ferrite system. The EDAX analysis confirmed the presence of Ni, Cu, Zn, Co, and O in accordance with the relative stoichiometry of Co-substituted NiCuZn ferrite. The electrical resistivity of ferrites is observed to decrease when Co2+ ions are substituted, regardless of AC and DC. The dielectric properties (ε' and ε″) of ferrites exhibited a consistent decrease as the frequency increased, and this trend persisted even at higher frequencies. VSM analysis showed the normal magnetic hysteresis of the developed ferrite system. At x = 0.05, the saturation magnetization of the ferrite was obtained to be the highest among the other substitution levels of Co. The Curie temperature fell down when there was a higher concentration of cobalt in the ferrite system (x = 0.20). After reaching a specific temperature, the µi values decreased abruptly, with an increase in the temperature. The steady state may be deduced from the fact that the constant real component of the initial permeability, µ', remained unchanged. However, with decreasing frequency, the values of µâ€³ decreased dramatically. The present NiCuZn ferrite series displays the enhanced dielectric properties suggesting the capability of potential candidates for microwave absorption applications with enhanced electromagnetic properties.

2.
Sci Rep ; 11(1): 5023, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658543

RESUMO

Surface area and surface active sites are two important key parameters in enhancing the gas sensing as well as photocatalytic properties of the parent material. With this motivation, herein, we report a facile synthesis of Reduced Graphene Oxide/Tungsten Oxide RGO/WO3 hierarchical nanostructures via simple hydrothermal route, and their validation in accomplishment of improved H2S sensing and highly efficient solar driven photo-degradation of RhB Dye. The self-made RGO using modified Hummer's method, is utilized to develop the RGO/WO3 nanocomposites with 0.15, 0.3 and 0.5 wt% of RGO in WO3 matrix. As-developed nanocomposites were analyzed using various physicochemical techniques such as XRD, FE-SEM, TEM/HRTEM, and EDAX. The creation of hierarchic marigold frameworks culminated in a well affiliated mesoporous system, offering efficient gas delivery networks, leading to a significant increase in sensing response to H2S. The optimized sensor (RGO/WO3 with 0.3 wt% loading) exhibited selective response towards H2S, which is ~ 13 times higher (Ra/Rg = 22.9) than pristine WO3 (Ra/Rg = 1.78) sensor. Looking at bi-directional application, graphene platform boosted the photocatalytic activity (94% degradation of Rhodamine B dye in 210 min) under natural sunlight. The RGO's role in increasing the active surface and surface area is clarified by the H2S gas response analysis and solar-driven photo-degradation of RhB dye solution. The outcome of this study provides the new insights to RGO/WO3 based nanocomposites' research spreadsheet, in view of multidisciplinary applications.

3.
ACS Omega ; 5(15): 8587-8595, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337421

RESUMO

A robust synthesis approach to develop CuO/ZnO nanocomposites using microwave-epoxide-assisted hydrothermal synthesis and their proficiency toward H2S gas-sensing application are reported. The low-cost metal salts (Cu and Zn) as precursors in aqueous media and epoxide (propylene oxide) as a proton scavenger/gelation agent are used for the formation of mixed metal hydroxides. The obtained sol was treated using the microwave hydrothermal process to yield the high-surface area (34.71 m2/g) CuO/ZnO nanocomposite. The developed nanocomposites (1.25-10 mol % Cu doping) showcase hexagonal ZnO and monoclinic CuO structures, with an average crystallite size in the range of 18-29 nm wrt Cu doping in the ZnO matrix. The optimized nanocomposite (2.5 mol % Cu doping) showed a lowest crystallite size of 21.64 nm, which reduced further to 18.06 nm upon graphene oxide addition. Morphological analyses (scanning electron microscopy and transmission electron microscopy) exhibited rounded grains along with copious channels typical for sol-gel-based materials . Elemental mapping displayed the good dispersion of Cu in the ZnO matrix. When these materials are employed as a gas sensor, they demonstrated high sensitivity and selectivity toward H2S gas in comparison with the reducing gases and volatile organic compounds under investigation. The systematic doping of Cu in the ZnO matrix exhibited an improved response from 76.66 to 94.28%, with reduction in operating temperature from 300 to 250 °C. The 2.5 mol % doped Cu in ZnO was found to impart a response of 23 s for 25 ppm of H2S. Gas-sensing properties are described using an interplay of epoxide-assisted sol-gel chemistry and structural and morphological properties of the developed material.

4.
RSC Adv ; 9(58): 33602-33606, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528879

RESUMO

We report a facile, green synthesis of graphene/Ag/ZnO nanocomposites and their use as acetone sensors via a medicinal plant extraction assisted precipitation process. The choice of plant extract in combination with metal nitrates led to self-sustaining colloid chemistry. Along with the green synthesis strategy, structural, morphological and gas sensing properties are described.

5.
Dalton Trans ; 47(47): 16840-16845, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30427342

RESUMO

We report a facile synthesis of Ru-loaded WO3 marigold structures through a hydrothermal route and their bidirectional applications as enhanced H2S gas sensors and efficient sunlight-driven photocatalysts. The developed hierarchical marigold structures provide effective gas diffusion channels via a well-aligned mesoporous framework, resulting in remarkable enhancement in the sensing response to H2S. The temperature and gas concentration dependence on the sensing properties reveals that Ru loading not only improves the sensing response, but also lowers the operating temperature of the sensor from 275 to 200 °C. The 0.5 wt% Ru-loaded WO3 shows selective response towards H2S, which is 45 times higher (142) than that of pristine WO3 (3.16) sensor, whereas the 0.25 wt% Ru-loaded WO3 exhibits the highest photocatalytic activity, as shown by the degradation of rhodamine B (RhB) under natural sunlight. The gas sensing and photocatalytic properties are explained through the role of Ru and the structural and morphological properties of the developed material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...