Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(20): 4514-4526, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859605

RESUMO

Amplification and overexpression of the MYC oncogene in tumor cells, including ovarian cancer cells, correlates with poor responses to chemotherapy. As MYC is not directly targetable, we have analyzed molecular pathways downstream of MYC to identify potential therapeutic targets. Here we report that ovarian cancer cells overexpressing glutaminase (GLS), a target of MYC and a key enzyme in glutaminolysis, are intrinsically resistant to platinum-based chemotherapy and are enriched with intracellular antioxidant glutathione. Deprivation of glutamine by glutamine-withdrawal, GLS knockdown, or exposure to the GLS inhibitor CB-839 resulted in robust induction of reactive oxygen species in high GLS-expressing but not in low GLS-expressing ovarian cancer cells. Treatment with CB-839 rendered GLShigh cells vulnerable to the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, and prolonged survival in tumor-bearing mice. These findings suggest consideration of applying a combined therapy of GLS inhibitor and PARP inhibitor to treat chemoresistant ovarian cancers, especially those with high GLS expression. SIGNIFICANCE: Targeting glutaminase disturbs redox homeostasis and nucleotide synthesis and causes replication stress in cancer cells, representing an exploitable vulnerability for the development of effective therapeutics. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4514/F1.large.jpg.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutaminase/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzenoacetamidas/administração & dosagem , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Glutaminase/antagonistas & inibidores , Glutamina/genética , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Tiadiazóis/administração & dosagem , Tiadiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Commun ; 11(1): 2717, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483112

RESUMO

Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1AWT and ARID1AKO human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-ß tumor suppressive function and that inactivation of ARID1A/TGF-ß axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality.


Assuntos
Carcinogênese/genética , Carcinoma Endometrioide/genética , Reprogramação Celular/genética , Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/genética , Fatores de Transcrição/genética , Animais , Carcinogênese/metabolismo , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/citologia , Endométrio/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fatores de Transcrição/metabolismo
3.
Cancers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766284

RESUMO

Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/ß-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.

4.
EBioMedicine ; 47: 184-194, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31492560

RESUMO

BACKGROUND: Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS: We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS: Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION: These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.


Assuntos
Neoplasias Ovarianas/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética , Quinase Syk/genética , Transcriptoma
5.
Clin Cancer Res ; 25(18): 5584-5594, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196855

RESUMO

PURPOSE: Somatic inactivating mutations in ARID1A, a component of the SWI/SNF chromatin remodeling complex, are detected in various types of human malignancies. Loss of ARID1A compromises DNA damage repair. The induced DNA damage burden may increase reliance on PARP-dependent DNA repair of cancer cells to maintain genome integrity and render susceptibility to PARP inhibitor therapy.Experimental Design: Isogenic ARID1A-/- and wild-type cell lines were used for assessing DNA damage response, DNA compactness, and profiling global serine/threonine phosphoproteomic in vivo. A panel of inhibitors targeting DNA repair pathways was screened for a synergistic antitumor effect with irradiation in ARID1A-/- tumors. RESULTS: ARID1A-deficient endometrial cells exhibit sustained levels in DNA damage response, a result further supported by in vivo phosphoproteomic analysis. Our results show that ARID1A is essential for establishing an open chromatin state upon DNA damage, a process required for recruitment of 53BP1 and RIF1, key mediators of non-homologous end-joining (NHEJ) machinery, to DNA lesions. The inability of ARID1A-/- cells to mount NHEJ repair results in a partial cytotoxic response to radiation. Small-molecule compound screens revealed that PARP inhibitors act synergistically with radiation to potentiate cytotoxicity in ARID1A-/- cells. Combination treatment with low-dose radiation and olaparib greatly improved antitumor efficacy, resulting in long-term remission in mice bearing ARID1A-deficient tumors. CONCLUSIONS: ARID1A-deficient cells acquire high sensitivity to PARP inhibition after exposure to exogenously induced DNA breaks such as ionizing radiation. Our findings suggest a novel biologically informed strategy for treating ARID1A-deficient malignancies.


Assuntos
Proteínas de Ligação a DNA/deficiência , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tolerância a Radiação/genética , Fatores de Transcrição/deficiência , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos
6.
J Pathol ; 248(3): 363-376, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883733

RESUMO

Ten-eleven translocation methylcytosine dioxygenase-1, TET1, takes part in active DNA demethylation. However, our understanding of DNA demethylation in cancer biology and its clinical significance remain limited. This study showed that TET1 expression correlated with poor survival in advanced-stage epithelial ovarian carcinoma (EOC), and with cell migration, anchorage-independent growth, cancer stemness, and tumorigenicity. In particular, TET1 was highly expressed in serous tubal intraepithelial carcinoma (STIC), a currently accepted type II EOC precursor, and inversely correlated with TP53 mutations. Moreover, TET1 could demethylate the epigenome and activate multiple oncogenic pathways, including an immunomodulation network having casein kinase II subunit alpha (CK2α) as a hub. Patients with TET1high CK2αhigh EOCs had the worst outcomes, and TET1-expressing EOCs were more sensitive to a CK2 inhibitor, both in vitro and in vivo. Our findings uncover the oncogenic and poor prognostic roles of TET1 in EOC and suggest an unexplored role of epigenetic reprogramming in early ovarian carcinogenesis. Moreover, the immunomodulator CK2α represents a promising new therapeutic target, warranting clinical trials of the tolerable CK2 inhibitor, CX4945, for precision medicine against EOC. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Caseína Quinase II/genética , Cistadenocarcinoma Seroso/patologia , Regulação Neoplásica da Expressão Gênica/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Cistadenocarcinoma Seroso/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/patologia , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico
7.
Biochim Biophys Acta Gen Subj ; 1863(2): 371-378, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30423357

RESUMO

BACKGROUND: Advanced epithelial ovarian cancer is one of the hardest human malignancies to treat. Standard treatment involves cytoreductive surgery and platinum-based chemotherapy, however, median progression-free survival for patients diagnosed with advanced stage disease (FIGO stages III and IV) is approximately 18 months. There has been little improvement in overall survival over the past decade and less than half of women with advanced stage disease will be living 5 years after diagnosis. A majority of patients initially have a favourable response to platinum-based chemotherapy, but most will eventually relapse and their disease will become platinum resistant. SCOPE OF REVIEW: Here, we review our current understanding of mechanisms that promote recurrence and acquired resistance in epithelial ovarian cancer with particular focus on studies that describe differences observed between untreated primary tumors and recurrent tumors, post-first-line chemotherapy. Multiple molecular mechanisms contribute to recurrence in patients following initial treatment for advanced epithelial ovarian cancer including those involving the tumor microenvironment, tumor immune status, cancer stem cells, DNA repair/cell survival pathways and extracellular matrix. MAJOR CONCLUSIONS: Due to the adaptive nature of recurrent tumors, the major contributing and specific resistance pattern may largely depend on the nature of the primary tumor itself. GENERAL SIGNIFICANCE: Future work that aims to elucidate the complex pattern of acquired resistance will be useful for predicting chemotherapy response/recurrence following primary diagnosis and to develop novel treatment strategies to improve the survival of patients with advanced epithelial ovarian cancer, especially in tumors not harbouring homologous DNA recombination repair deficiencies.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Microambiente Tumoral/efeitos dos fármacos
8.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2793-2813, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777905

RESUMO

Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.


Assuntos
Proliferação de Células/fisiologia , Enzimas/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/farmacocinética , Regulação para Baixo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Regulação para Cima
9.
Oncogene ; 37(28): 3778-3789, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29643476

RESUMO

Cell motility and invasiveness are prerequisites for dissemination, and largely account for cancer mortality. We have identified an actionable kinase, spleen tyrosine kinase (SYK), which is keenly tightly associated with tumor progression in ovarian cancer. Here, we report that active recombinant SYK directly phosphorylates cortactin and cofilin, which are critically involved in assembly and dynamics of actin filament through phosphorylation signaling. Enhancing SYK activity by inducing expression of a constitutively active SYK mutant, SYK130E, increased growth factor-stimulated migration and invasion of ovarian cancer cells, which was abrogated by cortactin knockdown. Similarly, SYK inhibitors significantly decreased invasion of ovarian cancer cells across basement membrane in real-time transwell assays and in 3D tumor spheroid models. SYK inactivation by targeted gene knockout or by small molecule inhibition reduced actin polymerization. Collectively, this study reported a new mechanism by which SYK signaling regulates ovarian cancer cell motility and invasiveness, and suggest a target-based strategy to prevent or suppress the advancement of ovarian malignancies.


Assuntos
Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/metabolismo , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos
10.
Hum Pathol ; 68: 87-91, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28873354

RESUMO

Activating mutations involving the members of the RAS signaling pathway, including KRAS, NRAS, and BRAF, have been reported in ovarian low-grade serous carcinoma and its precursor lesion, serous borderline tumor (SBT). Whether additional genetic alterations in the RAS oncogene family accumulate during the progression of SBT to invasive low-grade serous carcinoma (LGSC) remains largely unknown. Although mutations of KRAS and BRAF occur at a very early stage of progression, even preceding the development of SBT, additional driving events, such as NRAS mutations, have been postulated to facilitate progression. In this study, we analyzed NRAS exon 3 mutational status in 98 cases that were diagnosed with SBT/atypical proliferative serous tumor, noninvasive LGSC, or invasive LGSC. Of the latter, NRAS Q61R (CAA to CGA) mutations were detected in only 2 of 56 (3.6%) cases. The same mutation was not detected in any of the SBTs (atypical proliferative serous tumors) or noninvasive LGSCs. Mutational analysis for hotspots in KRAS and BRAF demonstrated a wild-type pattern of KRAS and BRAF in one of the NRAS-mutated cases. Interestingly, another LGSC case with NRAS mutation harbored a concurrent BRAF V600L mutation. These findings indicate that, although recurrent NRAS mutations are present, their low prevalence indicates that NRAS plays a limited role in the development of LGSC. Further studies to identify other oncogenic events that drive LGSC progression are warranted.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Mutação , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Baltimore , Carcinoma/patologia , Proliferação de Células , Análise Mutacional de DNA , Dinamarca , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Taxa de Mutação , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Adulto Jovem
11.
J Biol Chem ; 291(18): 9690-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26953344

RESUMO

ARID1A is a tumor suppressor gene that belongs to the switch/sucrose non-fermentable chromatin remodeling gene family. It is mutated in many types of human cancer with the highest frequency in endometrium-related ovarian and uterine neoplasms including ovarian clear cell, ovarian endometrioid, and uterine endometrioid carcinomas. We have previously reported that mutations in the promoter of human telomerase reverse transcriptase (TERT) rarely co-occur with the loss of ARID1A protein expression, suggesting a potential role of ARID1A in telomere biology. In this study, we demonstrate that ARID1A negatively regulates TERT transcriptional regulation and activity via binding to the regulatory element of TERT and promotes a repressive histone mode. Induction of ARID1A expression was associated with increased occupancy of SIN3A and H3K9me3, known transcription repressor and histone repressor marks, respectively. Thus, loss of ARID1A protein expression caused by inactivating mutations reactivates TERT transcriptional activity and confers a survival advantage of tumor cells by maintaining their telomeres.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Telomerase/biossíntese , Homeostase do Telômero , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Telomerase/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
12.
J Pathol Clin Res ; 1(3): 186-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27499903

RESUMO

Uterine endometrioid carcinoma is the most common neoplastic disease in the female genital tract and develops from a common precursor lesion, atypical hyperplasia/endometrioid intraepithelial neoplasia (AH/EIN). Although the genomic landscape of endometrioid carcinoma has been recently revealed, the molecular alterations that contribute to tumour progression from AH/EIN to carcinoma remain to be elucidated. In this study, we used immunohistochemistry to determine if loss of expression of two of the most commonly mutated tumour suppressors in endometrioid carcinoma, PTEN and ARID1A, was associated with increased proliferation in AH/EIN. We found that 80 (70%) of 114 cases exhibited decreased or undetectable PTEN and 17 (15%) of 114 cases had focal loss of ARID1A staining. ARID1A loss was focal, while PTEN loss was diffuse, and all specimens with ARID1A loss had concurrent PTEN loss (p = 0.0003). Mapping the distribution of PTEN and ARID1A staining in the same specimens demonstrated that all AH/EIN areas with ARID1A loss were geographically nested within the areas of PTEN loss. A significant increase in the proliferative activity was observed in areas of AH/EIN with concurrent loss of PTEN and ARID1A compared to immediately adjacent AH/EIN areas showing only PTEN loss. In a cell culture system, co-silencing of ARID1A and PTEN in human endometrial epithelial cells increased cellular proliferation to a greater degree than silencing either ARID1A or PTEN alone. These results suggest an essential gatekeeper role for ARID1A that prevents PTEN inactivation from promoting cellular proliferation in the transition of pre-cancerous lesions to uterine endometrioid carcinoma.

13.
J Biol Chem ; 288(35): 25450-25465, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23846698

RESUMO

Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Regulação da Expressão Gênica/fisiologia , Hepcidinas/sangue , Ferro/sangue , Modelos Biológicos , Complexos Multiproteicos/sangue , alfa-Macroglobulinas/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Hepcidinas/genética , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa-Macroglobulinas/genética
14.
PLoS One ; 8(2): e57273, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437357

RESUMO

Iron is critical for cellular proliferation and its depletion leads to a suppression of both DNA synthesis and global translation. These observations suggest that iron depletion may trigger a cellular "stress response". A canonical response of cells to stress is the formation of stress granules, which are dynamic cytoplasmic aggregates containing stalled pre-initiation complexes that function as mRNA triage centers. By differentially prioritizing mRNA translation, stress granules allow for the continued and selective translation of stress response proteins. Although the multi-subunit eukaryotic initiation factor 3 (eIF3) is required for translation initiation, its largest subunit, eIF3a, may not be essential for this activity. Instead, eIF3a is a vital constituent of stress granules and appears to act, in part, by differentially regulating specific mRNAs during iron depletion. Considering this, we investigated eIF3a's role in modulating iron-regulated genes/proteins that are critically involved in proliferation and metastasis. In this study, eIF3a was down-regulated and recruited into stress granules by iron depletion as well as by the classical stress-inducers, hypoxia and tunicamycin. Iron depletion also increased expression of the metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), and a known downstream repressed target of eIF3a, namely the cyclin-dependent kinase inhibitor, p27(kip1). To determine if eIF3a regulates NDRG1 expression, eIF3a was inducibly over-expressed or ablated. Importantly, eIF3a positively regulated NDRG1 expression and negatively regulated p27(kip1) expression during iron depletion. This activity of eIF3a could be due to its recruitment to stress granules and/or its ability to differentially regulate mRNA translation during cellular stress. Additionally, eIF3a positively regulated proliferation, but negatively regulated cell motility and invasion, which may be due to the eIF3a-dependent changes in expression of NDRG1 and p27(kip1) observed under these conditions.


Assuntos
Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Fator de Iniciação 3 em Eucariotos/genética , Fibroblastos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Deficiências de Ferro , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 3 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 3 em Eucariotos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/farmacologia , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tunicamicina/farmacologia
15.
Proc Natl Acad Sci U S A ; 109(50): 20590-5, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23169664

RESUMO

There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich ataxia (FA). This disease is due to decreased expression of the mitochondrial protein, frataxin, which leads to alterations in mitochondrial iron (Fe) metabolism. The identification of potentially toxic mitochondrial Fe deposits in FA suggests Fe plays a role in its pathogenesis. Studies using the muscle creatine kinase (MCK) conditional frataxin knockout mouse that mirrors the disease have demonstrated frataxin deletion alters cardiac Fe metabolism. Indeed, there are pronounced changes in Fe trafficking away from the cytosol to the mitochondrion, leading to a cytosolic Fe deficiency. Considering Fe deficiency can induce apoptosis and cell death, we examined the effect of dietary Fe supplementation, which led to body Fe loading and limited the cardiac hypertrophy in MCK mutants. Furthermore, this study indicates a unique effect of heart and skeletal muscle-specific frataxin deletion on systemic Fe metabolism. Namely, frataxin deletion induces a signaling mechanism to increase systemic Fe levels and Fe loading in tissues where frataxin expression is intact (i.e., liver, kidney, and spleen). Examining the mutant heart, native size-exclusion chromatography, transmission electron microscopy, Mössbauer spectroscopy, and magnetic susceptibility measurements demonstrated that in the absence of frataxin, mitochondria contained biomineral Fe aggregates, which were distinctly different from isolated mammalian ferritin molecules. These mitochondrial aggregates of Fe, phosphorus, and sulfur, probably contribute to the oxidative stress and pathology observed in the absence of frataxin.


Assuntos
Ataxia de Friedreich/metabolismo , Ferro/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Creatina Quinase Forma MM/genética , Creatina Quinase Forma MM/metabolismo , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Humanos , Ferro/sangue , Proteína 2 Reguladora do Ferro/metabolismo , Ferro da Dieta/administração & dosagem , Proteínas de Ligação ao Ferro/antagonistas & inibidores , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Transdução de Sinais , Espectroscopia de Mossbauer , Frataxina
16.
PLoS One ; 7(8): e43696, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928018

RESUMO

Siderocalin (also lipocalin 2, NGAL or 24p3) binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract. Siderocalin has also been proposed to alter cellular iron trafficking, for instance, driving apoptosis through iron efflux via BOCT. An endogenous siderophore composed of gentisic acid (2,5-dihydroxybenzoic acid) substituents was proposed to mediate cellular efflux. However, binding studies reported herein contradict the proposal that gentisic acid forms high-affinity ternary complexes with siderocalin and iron, or that gentisic acid can serve as an endogenous siderophore at neutral pH. We also demonstrate that siderocalin does not induce cellular iron efflux or stimulate apoptosis, questioning the role siderocalin plays in modulating iron metabolism.


Assuntos
Proteínas de Fase Aguda/farmacologia , Apoptose/efeitos dos fármacos , Gentisatos/metabolismo , Hematopoese , Ferro/metabolismo , Lipocalinas/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Proteínas de Fase Aguda/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lipocalina-2 , Lipocalinas/química , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas/química
17.
J Biol Chem ; 287(10): 6960-8, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22262835

RESUMO

Nitrogen monoxide (NO) markedly affects intracellular iron metabolism, and recent studies have shown that molecules traditionally involved in drug resistance, namely GST and MRP1 (multidrug resistance-associated protein 1), are critical molecular players in this process. This is mediated by interaction of these proteins with dinitrosyl-dithiol-iron complexes (Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670-7675; Lok, H. C., Suryo Rahmanto, Y., Hawkins, C. L., Kalinowski, D. S., Morrow, C. S., Townsend, A. J., Ponka, P., and Richardson, D. R. (2012) J. Biol. Chem. 287, 607-618). These complexes are bioavailable, have a markedly longer half-life compared with free NO, and form in cells after an interaction between iron, NO, and glutathione. The generation of dinitrosyl-dithiol-iron complexes acts as a common currency for NO transport and storage by MRP1 and GST P1-1, respectively. Understanding the biological trafficking mechanisms involved in the metabolism of NO is vital for elucidating its many roles in cellular signaling and cytotoxicity and for development of new therapeutic targets.


Assuntos
Glutationa S-Transferase pi/metabolismo , Compostos de Ferro/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico Ativo/fisiologia , Glutationa/metabolismo , Humanos
18.
Biochim Biophys Acta ; 1820(3): 237-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21933697

RESUMO

BACKGROUND: Melanotransferrin was discovered in the 1980s as one of the first melanoma tumour antigens. The molecule is a transferrin homologue that is found predominantly bound to the cell membrane by a glycosyl-phosphatidylinositol anchor. MTf was described as an oncofoetal antigen expressed in only small quantities in normal tissues, but in much larger amounts in neoplastic cells. Several diseases are associated with expression of melanotransferrin, including melanoma and Alzheimer's disease, although the significance of the protein to the pathogenesis of these conditions remains unclear. SCOPE OF REVIEW: In this review, we discuss the roles of melanotransferrin in physiological and pathological processes and its potential use as an immunotherapy. MAJOR CONCLUSIONS: Although the exact biological functions of melanotransferrin remain elusive, a growing number of roles have been attributed to the protein, including iron transport/metabolism, angiogenesis, proliferation, cellular migration and tumourigenesis. GENERAL SIGNIFICANCE: The high expression of melanotransferrin in several disease states, particularly malignant melanoma, remains intriguing and may have clinical significance. Further studies on the biology of this protein may provide new insights as well as potential therapeutic avenues for cancer treatment. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Assuntos
Melanoma/metabolismo , Metaloproteínas/fisiologia , Proteínas de Neoplasias/fisiologia , Animais , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/fisiologia , Humanos , Transporte de Íons , Ferro/metabolismo , Antígenos Específicos de Melanoma , Proteínas de Membrana/fisiologia , Metaloproteínas/imunologia , Camundongos , Proteínas de Neoplasias/imunologia , Neovascularização Patológica
19.
Mol Pharmacol ; 79(6): 921-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389104

RESUMO

Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone possesses potent and selective antitumor activity. Its cytotoxicity has been attributed to iron chelation leading to inhibition of the iron-containing enzyme ribonucleotide reductase (RR). Thiosemicarbazone iron complexes have been shown to be redox-active, although their effect on cellular antioxidant systems is unclear. Using a variety of antioxidants, we found that only N-acetylcysteine significantly inhibited thiosemicarbazone-induced antiproliferative activity. Thus, we examined the effects of thiosemicarbazones on major thiol-containing systems considering their key involvement in providing reducing equivalents for RR. Thiosemicarbazones significantly (p < 0.001) elevated oxidized trimeric thioredoxin levels to 213 ± 5% (n = 3) of the control. This was most likely due to a significant (p < 0.01) decrease in thioredoxin reductase activity to 65 ± 6% (n = 4) of the control. We were surprised to find that the non-redox-active chelator desferrioxamine increased thioredoxin oxidation to a lower extent (152 ± 9%; n = 3) and inhibited thioredoxin reductase activity (62 ± 5%; n = 4), but at a 10-fold higher concentration than thiosemicarbazones. In contrast, only the thiosemicarbazones significantly (p < 0.05) reduced the glutathione/oxidized-glutathione ratio and the activity of glutaredoxin that requires glutathione as a reductant. All chelators significantly decreased RR activity, whereas the NADPH/NADP(total) ratio was not reduced. This was important to consider because NADPH is required for thiol reduction. Thus, thiosemicarbazones could have an additional mechanism of RR inhibition via their effects on major thiol-containing systems.


Assuntos
Quelantes de Ferro/farmacologia , Piridinas/farmacologia , Ribonucleotídeo Redutases/metabolismo , Compostos de Sulfidrila/metabolismo , Tiossemicarbazonas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos
20.
Curr Top Med Chem ; 11(5): 483-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21192781

RESUMO

Cancer is one of the leading causes of death worldwide and there is an increasing need for novel anti-tumor therapeutics with greater selectivity and potency. A new strategy in the treatment of cancer has focused on targeting an essential cell metabolite, iron (Fe). Iron is vital for cell growth and metabolism, forming a crucial component of the active site of ribonucleotide reductase (RR), the rate-limiting enzyme in DNA synthesis. Cancer cells in particular require large amounts of Fe to proliferate, making them more susceptible to the Fe deficiency caused by Fe chelators. Beginning with primordial siderophores, Fe chelators have since evolved to a new generation of potent and efficient anti-cancer agents. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) ligands that demonstrate marked and selective anti-tumor activity both in vitro and in vivo against a wide spectrum of tumors. The mechanism of action of these novel ligands includes alterations in the expression of key regulatory molecules as well as the generation of redox active Fe complexes. Interestingly, non-synthetic Fe chelators including silybin and curcumin, both of which are derived from plants, also have vast potential in the treatment of cancer. This review explores the development of novel Fe chelators for the treatment of cancer and their mechanisms of action.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia por Quelação , Quelantes de Ferro/química , Quelantes de Ferro/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ferro/química , Ferro/metabolismo , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...