Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 13(11): e12317, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38006386

RESUMO

BACKGROUND: Hereditary angioedema (HAE) with C1-inhibitor deficiency (C1-INH-HAE) is a rare disease caused by low level (type I) or dysfunction (type II) of the C1-inhibitor protein with subsequent reduction of certain complement protein levels. METHODS: To develop and test the reliability of a two-tier method based on C1-INH and C4 quantitation followed by genetic analysis from dried blood spot (DBS) for establishing the diagnosis of C1-INH-HAE. C1-INH and C4 proteins have been quantified in human plasma using a classical immuno-assay and in DBS using a newly developed proteolytic liquid chromatography-mass spectrometry method. Genetic analysis was carried out as reported previously (PMID: 35386643) and by a targeted next-generation sequencing panel, multiplex ligation-dependent probe amplification and in some cases whole genome sequencing. RESULTS: DBS quantification of C1-INH and C4 showed the same pattern as plasma, offering the possibility of screening patients with AE symptoms either locally or remotely. Genetic analysis from DBS verified each of the previously identified SERPING1 mutations of the tested C1-INH-HAE patients and revealed the presence of other rare variations in genes that may be involved in the pathogenesis of AE episodes. CONCLUSIONS: C1-INH/C4 quantification in DBS can be used for screening of hereditary AE and DNA extracted from dried blood spots is suitable for identifying various types of mutations of the SERPING1 gene.

2.
Orphanet J Rare Dis ; 17(1): 179, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505348

RESUMO

BACKGROUND: Ceroid lipofuscinoses neuronal 6 (CLN6) disease belongs to the neuronal ceroid lipofuscinoses (NCLs), complex and genetically heterogeneous disorders with wide geographical and phenotypic variation. The first clinical signs usually appear between 18 months and 8 years, but examples of later-onset have also been reported. Common manifestations include ataxia, seizures, vision impairment, and developmental regression. Because these are shared by other neurological diseases, identification of CLN6 genetic variants is imperative for early diagnosis. RESULTS: We present one of the largest cohorts to date of genetically diagnosed CLN6 patients screened at a single center. In total 97 subjects, originating from 20 countries were screened between 2010 and 2020. They comprised 86 late-infantile, eight juvenile, and three adult-onset cases (two patients with Kufs disease type A, and one with teenage progressive myoclonic epilepsy). The male to female ratio was 1.06: 1.00. The age at referral was between six months and 33 years. The time from disease onset to referral ranged from less than 1 month to 8.3 years. The clinical phenotype consisted of a combination of symptoms, as reported before. We characterized a total of 45 distinct variants defining 45 distinct genotypes. Twenty-four were novel variants, some with distinct geographic associations. Remarkably, c.257A > G (p.H86R) was present in five out of 23 unrelated Egyptian individuals but in no patients from other countries. The most common genotype was homozygosity for the c.794_796del in-frame deletion. It was present in about one-third of CLN6 patients (28 unrelated cases, and 2 familial cases), all with late-infantile onset. Variants with a high likelihood of causing loss of CLN6 function were found in 21% of cases and made up 33% of all distinct variants. Forty-four percent of variants were classified as pathogenic or likely pathogenic. CONCLUSIONS: Our study significantly expands the number of published clinical cases and the mutational spectrum of disease-associated CLN6 variants, especially for the Middle Eastern and North African regions. We confirm previous observations regarding the most prevalent symptoms and recommend including CLN6 in the genetic diagnosis of patients presenting with early-onset abnormalities of the nervous system, musculoskeletal system, and eye.


Assuntos
Epilepsias Mioclônicas Progressivas , Lipofuscinoses Ceroides Neuronais , Adolescente , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética
3.
Brain Struct Funct ; 223(6): 2767-2783, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29633039

RESUMO

The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcß. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Córtex Visual/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteína GAP-43/química , Proteína GAP-43/metabolismo , Hemoglobinas/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Metais/metabolismo , Pessoa de Meia-Idade , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Peptídeos/metabolismo , Mudanças Depois da Morte , Córtex Visual/anatomia & histologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/metabolismo
4.
Mass Spectrom Rev ; 35(6): 666-686, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-25677057

RESUMO

The liver is the most central organ and the largest gland of the body that influences and controls a variety of metabolic and catabolic processes. It produces inconceivable many essential proteins, is responsible for the recovery of various food components, degrades toxins, mediates the bile production, and is involved in the excretion of unwanted metabolites. Several of these anabolic or catabolic functions of the liver depend on trace elements. These are either integral part of enzymes, cofactors, or act as chemical catalysts. Therefore, a lack of trace elements can lead to organ failure or systemic illness. Conversely, excessive hepatic trace element deposition resulting from genetic disorders, intoxication, extensive dietary supply, or long-term parenteral nutrition may cause hepatic inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma. Although specific serum parameters currently allow rough assessment of metal deficit and excess, the precise quantification of hepatic metal content in liver is presently only possible by different titration or staining techniques of biopsy specimens. Recently, novel innovative metal imaging techniques were developed that are on the way to replace these traditional methods. In the present review, we summarize the function of different trace elements in liver health and disease and discuss the present knowledge on how quantitative biometal imaging techniques such as synchrotron X-ray fluorescence microscopy, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry enrich diagnostics in the detection and quantification of hepatic metal disorders. We will further discuss sample preparation, sensitivity, spatial resolution, specificity, quantification strategies, and potential future applications of metal bioimaging in experimental research and clinical daily routine. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:666-686, 2016.


Assuntos
Hepatopatias , Humanos , Terapia a Laser , Fígado , Metais , Espectrometria de Massa de Íon Secundário
5.
Top Curr Chem ; 331: 37-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22547356

RESUMO

The combination of MALDI-TOF-mass spectrometry with gel electrophoretic separation using protein visualization by staining procedures involving such as Coomassie Brilliant Blue has been established as a widely used approach in proteomics. Although this approach has been shown to present high detection sensitivity, drawbacks and limitations frequently arise from the significant background in the mass spectrometric analysis. In this chapter we describe an approach for the application of MALDI-MS to the mass spectrometric identification of proteins from one-dimensional (1D) and two-dimensional (2D) gel electrophoretic separation, using stain-free detection and visualization based on native protein fluorescence. Using the native fluorescence of aromatic protein amino acids with UV transmission at 343 nm as a fast gel imaging system, unstained protein spots are localized and, upon excision from gels, can be proteolytically digested and analyzed by MALDI-MS. Following the initial development and testing with standard proteins, applications of the stain-free gel electrophoretic detection approach to mass spectrometric identification of biological proteins from 2D-gel separations clearly show the feasibility and efficiency of this combination, as illustrated by a proteomics study of porcine skeleton muscle proteins. Major advantages of the stain-free gel detection approach with MALDI-MS analysis are (1) rapid analysis of proteins from 1D- and 2D-gel separation without destaining required prior to proteolytic digestion, (2) the low detection limits of proteins attained, and (3) low background in the MALDI-MS analysis.


Assuntos
Músculo Esquelético/química , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Eletroforese em Gel Bidimensional/economia , Eletroforese em Gel Bidimensional/métodos , Fluorescência , Dados de Sequência Molecular , Proteoma/isolamento & purificação , Proteômica/economia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Suínos
6.
J Am Soc Mass Spectrom ; 22(4): 784-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21472615

RESUMO

We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.


Assuntos
Proteínas de Bactérias/química , Chlamydophila pneumoniae/metabolismo , Fragmentos de Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Antígenos de Bactérias/química , Biomarcadores/química , Chlamydophila pneumoniae/química , Imunoensaio , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Mol Cell Proteomics ; 8(1): 122-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18716312

RESUMO

We present here a new approach that enabled the identification of a new protein from a bacterial strain with unknown genomic background using a combination of inverted PCR with degenerate primers derived from N-terminal protein sequences and high resolution peptide mass determination of proteolytic digests from two-dimensional electrophoretic separation. Proteins of the sulfate-reducing bacterium Desulfotignum phosphitoxidans specifically induced in the presence of phosphite were separated by two-dimensional gel electrophoresis as a series of apparent soluble and membrane-bound isoforms with molecular masses of approximately 35 kDa. Inverted PCR based on N-terminal sequences and high resolution peptide mass fingerprinting by Fourier transform-ion cyclotron resonance mass spectrometry provided the identification of a new NAD(P) epimerase/dehydratase by specific assignment of peptide masses to a single ORF, excluding other possible ORF candidates. The protein identification was ascertained by chromatographic separation and sequencing of internal proteolytic peptides. Metal ion affinity isolation of tryptic peptides and high resolution mass spectrometry provided the identification of five phosphorylations identified in the domains 23-47 and 91-118 of the protein. In agreement with the phosphorylations identified, direct molecular weight determination of the soluble protein eluted from the two-dimensional gels by mass spectrometry provided a molecular mass of 35,400 Da, which is consistent with an average degree of three phosphorylations.


Assuntos
Bactérias/enzimologia , Genoma Bacteriano/genética , Espectrometria de Massas , NADP/metabolismo , Proteômica/métodos , Racemases e Epimerases/metabolismo , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Primers do DNA/metabolismo , Eletroforese em Gel Bidimensional , Genes Bacterianos , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta/genética , Peptídeos/química , Peptídeos/isolamento & purificação , Fosforilação , Reação em Cadeia da Polimerase , Racemases e Epimerases/genética , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Am Soc Mass Spectrom ; 19(7): 1004-13, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18455927

RESUMO

Structure and dynamics of membrane-bound light-harvesting pigment-protein complexes (LHCs), which collect and transmit light energy for photosynthesis and thereby play an essential role in the regulation of photosynthesis and photoprotection, were identified and characterized using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LHCs from photosystem II (LHCII) were isolated from the thylakoid membrane of Arabidopsis thaliana leaves after light stress treatment using sucrose density gradient centrifugation, and separated by gel-filtration into LHCII subcomplexes. Using reversed-phase high-performance liquid chromatography and two-dimensional (2D) gel electrophoresis, the LHCII proteins, Lhcb1-6 and fibrillins, were efficiently separated and identified by FTICR-MS. Some of the LHCII subcomplexes were shown to migrate from photosystem II to photosystem I as a result of short-term adaptation to changes in light intensity. In the mobile LHCII subcomplexes, decreased levels of fibrillins and a modified composition of LHCII protein isoforms were identified compared to the tightly bound LHCII subcomplexes. In addition, FTICR-MS analysis revealed several oxidative modifications of LHCII proteins. A number of protein spots in 2D gels were found to contain a mixture of proteins, illustrating the feasibility of high-resolution mass spectrometry to identify proteins that remain unseparated in 2D gels even upon extended pH gradients.


Assuntos
Proteínas de Arabidopsis/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Proteômica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Luz , Fotossíntese , Extratos Vegetais/química
9.
J Immunol ; 180(8): 5490-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18390732

RESUMO

The controversial discussion about the role of Chlamydia pneumoniae in atherosclerosis cannot be solved without a reliable diagnosis that allows discrimination between past and persistent infections. Using a proteomic approach and immunoblotting with human sera, we identified 31 major C. pneumoniae Ags originating from 27 different C. pneumoniae proteins. More than half of the proteins represent Chlamydia Ags not described previously. Using a comparative analysis of spot reactivity Pmp6, OMP2, GroEL, DnaK, RpoA, EF-Tu, as well as CpB0704 and CpB0837, were found to be immunodominant. The comparison of Ab-response patterns of sera from subjects with and without evidence for persisting C. pneumoniae, determined by multiple PCR analysis of PBMC and vasculatory samples, resulted in differential reactivity for 12 proteins, which is not reflected by reactivity of the sera in the microimmunofluorescence test, the current gold standard for serodiagnosis. Although reactivity of sera from PCR-positive donors was increased toward RpoA, MOMP, YscC, Pmp10, PorB, Pmp21, GroEL, and Cpaf, the reactivity toward YscL, Rho, LCrE, and CpB0837 was decreased, reflecting the altered protein expression of persisting C. pneumoniae in vitro. Our data provide the first evidence of a unique Ab-response pattern associated with persistent C. pneumoniae infections, which is a prerequisite for the serological determination of persistently infected patients.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydophila pneumoniae/imunologia , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/isolamento & purificação , Western Blotting , Infecções por Chlamydia/microbiologia , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...