Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 186(1): 581-598, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33619553

RESUMO

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.


Assuntos
Glycine max/genética , Proteínas de Membrana Transportadoras/genética , Fixação de Nitrogênio , Proteínas de Plantas/genética , Rhizobium/fisiologia , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Glycine max/microbiologia , Simbiose
2.
PLoS One ; 12(1): e0168775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28045943

RESUMO

For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 µM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-ß-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 µM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Arginina/análogos & derivados , Canavanina/metabolismo , Homoarginina/metabolismo , Humanos , Cinética , Oócitos/metabolismo , Fases de Leitura Aberta , Filogenia , Interferência de RNA , Saccharomyces cerevisiae/genética , Xenopus laevis
3.
Curr Biol ; 25(23): 3126-31, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26628011

RESUMO

Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated, i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Distribuição Tecidual
4.
Biochem J ; 449(2): 555-66, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22994895

RESUMO

Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Homeostase , Leishmania donovani/metabolismo , Proteínas de Protozoários/metabolismo , Adaptação Fisiológica , Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Arginina/metabolismo , Transporte Biológico , Northern Blotting , Western Blotting , Membrana Celular/metabolismo , Expressão Gênica , Teste de Complementação Genética , Ácido Glutâmico/metabolismo , Leishmania donovani/genética , Microscopia de Fluorescência , Mutação , Pressão Osmótica , Prolina/metabolismo , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
5.
Planta ; 235(2): 311-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21904872

RESUMO

Members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6. AtPTR4 and AtPTR6 show distinct expression patterns, while AtPTR4 is expressed in the vasculature of the plants, AtPTR6 is highly expressed in pollen and during senescence. Phylogenetic analyses revealed that AtPTR2, 4 and 6 belong to one clade of subgoup II, whereas AtPTR1 and 5 are found in a second clade. Like AtPTR2, AtPTR4-GFP and AtPTR6-GFP fusion proteins are localized at the tonoplast. Vacuolar localization was corroborated by co-localization of AtPTR2-YFP with the tonoplast marker protein GFP-AtTIP2;1 and AtTIP1;1-GFP. This indicates that the two clades reflect different intracellular localization at the tonoplast (AtPTR2, 4, 6) and plasma membrane (AtPTR1, 5), respectively.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Plantas/metabolismo , Animais , Proteínas de Transporte de Ânions/classificação , Proteínas de Transporte de Ânions/genética , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cultura Axênica , Membrana Celular/genética , Membrana Celular/metabolismo , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Oócitos/citologia , Oócitos/metabolismo , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Amino Acids ; 42(1): 347-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170560

RESUMO

In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Leishmania donovani/metabolismo , Lisina/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Humanos , Leishmania donovani/patogenicidade , Trypanosoma cruzi/patogenicidade
7.
Proc Natl Acad Sci U S A ; 107(49): 21187-92, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078981

RESUMO

Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.


Assuntos
Arabidopsis/fisiologia , Arsênio/metabolismo , Tolerância a Medicamentos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fitoquelatinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Biodegradação Ambiental , Quelantes , Proteína 2 Associada à Farmacorresistência Múltipla , Vacúolos/metabolismo
8.
Plant Physiol ; 148(2): 856-69, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18753286

RESUMO

Transporters for di- and tripeptides belong to the large and poorly characterized PTR/NRT1 (peptide transporter/nitrate transporter 1) family. A new member of this gene family, AtPTR5, was isolated from Arabidopsis (Arabidopsis thaliana). Expression of AtPTR5 was analyzed and compared with tissue specificity of the closely related AtPTR1 to discern their roles in planta. Both transporters facilitate transport of dipeptides with high affinity and are localized at the plasma membrane. Mutants, double mutants, and overexpressing lines were exposed to several dipeptides, including toxic peptides, to analyze how the modified transporter expression affects pollen germination, growth of pollen tubes, root, and shoot. Analysis of atptr5 mutants and AtPTR5-overexpressing lines showed that AtPTR5 facilitates peptide transport into germinating pollen and possibly into maturating pollen, ovules, and seeds. In contrast, AtPTR1 plays a role in uptake of peptides by roots indicated by reduced nitrogen (N) levels and reduced growth of atptr1 mutants on medium with dipeptides as the sole N source. Furthermore, overexpression of AtPTR5 resulted in enhanced shoot growth and increased N content. The function in peptide uptake was further confirmed with toxic peptides, which inhibited growth. The results show that closely related members of the PTR/NRT1 family have different functions in planta. This study also provides evidence that the use of organic N is not restricted to amino acids, but that dipeptides should be considered as a N source and transport form in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dipeptídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Germinação , Proteínas de Membrana Transportadoras/genética , Mutagênese Insercional , Nitrogênio/metabolismo , Oócitos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Xenopus/genética , Xenopus/metabolismo
9.
Mol Microbiol ; 60(1): 30-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16556218

RESUMO

We describe the first functional and molecular characterization of an amino acid permease (LdAAP3) from the human parasitic protozoan Leishmania donovani, the causative agent of visceral leishmaniasis in humans. This permease contains 480 amino acids with 11 predicted trans-membrane domains. Expressing LdAAP3 in Saccharomyces cerevisiae mutants revealed that LdAAP3 codes for a high-affinity arginine transporter (Km 1.9 microM). LdAAP3 is highly specific for arginine as its transport was not inhibited by other amino acids or arginine-related compounds. Using green fluorescence protein (GFP) fused to the N-terminus of LdAAP3, this transporter was localized to the surface membrane of promastigotes. The GFP-LdAAP3 chimera mediated a threefold increase in arginine transport in promastigotes, indicating that it is active and confirmed that LdAAP3 codes for an arginine transporter in parasite cells as well. LdAAP3 is novel as it shares a high level of homology with amino acid permeases from other trypanosomatidae but almost none with permeases from other phyla. The results of this work suggest that LdAAP3 might play a role in host-parasite interaction.


Assuntos
Arginina/metabolismo , Leishmania donovani/enzimologia , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Meios de Cultura , Humanos , Leishmania donovani/genética , Leishmania donovani/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
10.
Plant Physiol ; 137(1): 117-26, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618414

RESUMO

Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K(m) = 0.1-0.3 mM), lower for Pro (K(m) = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K(m) = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Nicotiana/fisiologia , Betaína/metabolismo , Membrana Celular/fisiologia , Expressão Gênica/fisiologia , Família Multigênica , Filogenia , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ácido gama-Aminobutírico/metabolismo
11.
Plant J ; 40(4): 488-99, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15500465

RESUMO

For the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S. cerevisiae cells on different di- and tripeptides and caused sensitivity to the phytotoxin phaseolotoxin. The spectrum of substrates recognized by AtPTR1 was determined in Xenopus laevis oocytes injected with AtPTR1 cRNA under voltage clamp conditions. AtPTR1 not only recognized a broad spectrum of di- and tripeptides, but also substrates lacking a peptide bond. However, amino acids, omega-amino fatty acids or peptides with more than three amino acid residues did not interact with AtPTR1. At pH 5.5 AtPTR1 had an apparent lower affinity (K(0.5) = 416 microm) for Ala-Asp compared with Ala-Ala (K(0.5) = 54 microm) and Ala-Lys (K(0.5) = 112 microm). Transient expression of AtPTR1/GFP fusion proteins in tobacco protoplasts showed that AtPTR1 is localized at the plasma membrane. In addition, transgenic plants expressing the beta-glucuronidase (uidA) gene under control of the AtPTR1 promoter demonstrated expression in the vascular tissue throughout the plant, indicative of a role in long-distance transport of di- and tripeptides.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Ornitina/análogos & derivados , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação , Organismos Geneticamente Modificados , Ornitina/metabolismo , Filogenia , Folhas de Planta/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...