Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(2): 3214-3223, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36601721

RESUMO

Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has significantly progressed with a rapid increase from 10 to 19% due to state-of-the-art research on nonfullerene acceptor molecules and various device processing strategies. However, OSCs still exhibit significant open circuit voltage loss (ΔVOC ∼ 0.6 V) due to high energetic offsets and molecular disorder. In this work, we present a systematic investigation to determine the effects of energetic offset and disorder on different recombination losses in open circuit voltage (VOC) using 13 different photoactive layers, wherein the PCE and ΔVOC vary in the ranges of 2.21-14.74% and 0.561-1.443 V, respectively. The detailed voltage loss analysis of all these devices was carried out, and voltage losses were correlated with energetic offset and disorder. This has enabled us to identify the key features for minimizing the voltage loss like: (1) a low energy offset between the donor and acceptor molecular states is essential to attain a nonradiative voltage loss (ΔVOC, nrad) as low as ∼200 meV and (2) Urbach energy, which is a measure of the materials' disorder and packing, should be low for the minimization of the radiative voltage loss (ΔVOC, rad). In addition, time-resolved photoluminescence spectroscopy was employed to further understand the exciton dynamics of pristine materials and donor-acceptor blends. It was observed that the absorbers with ultralong exciton lifetime (∼1000 ps) produce higher efficiencies. The current study emphasizes the importance of simultaneously testing photovoltaic performance and active layer exciton dynamics for rational device optimization and opens new prospects for designing novel molecules with fine-tuning of energetic offset and disorder with longer exciton lifetime which is the effective strategy to boost the efficiency of OSCs to their modified Shockley-Queisser (SQ) limit by minimizing radiative and nonradiative voltage losses.

2.
Nanotechnology ; 33(43)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35850090

RESUMO

Understanding the linear and nonlinear optical (NLO) responses of two-dimensional nanomaterials is essential to effectively utilize them in various optoelectronic applications. Here, few-layer MoS2and WS2nanoflakes with lateral size less than 200 nm were prepared by liquid-phase exfoliation, and their linear and NLO responses were studied simultaneously using experimental measurements and theoretical simulations. Finite-difference time-domain (FDTD) simulations confirmed the redshift in the excitonic transitions when the thickness was increased above 10 nm indicating the layer-number dependent bandgap of nanoflakes. WS2nanoflakes exhibited around 5 times higher absorption to scattering cross-section ratio than MoS2nanoflakes at various wavelengths. Open aperture Z scan analysis of both the MoS2and WS2nanoflakes using 532 nm nanosecond laser pulses reveals strong nonlinear absorption activity with effective nonlinear absorption coefficient (ßeff) of 120 cm GW-1and 180 cm GW-1, respectively, which was attributed to the combined contributions of ground, singlet excited and triplet excited state absorption. FDTD simulation results also showed the signature of strong absorption density of few layer nanoflakes which may be account for their excellent NLO characteristics. Optical limiting threshold values of MoS2and WS2nanoflakes were obtained as ∼1.96 J cm-2and 0.88 J cm-2, respectively, which are better than many of the reported values. Intensity dependent switching from saturable absorption (SA) to reverse SA was also observed for MoS2nanoflakes when the laser intensity increased from 0.14 to 0.27 GW cm-2. The present study provides valuable information to improve the selection of two-dimensional nanomaterials for the design of highly efficient linear and nonlinear optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...