Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18907, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344673

RESUMO

Photobiomodulation (PBM) refers to the use of light to modulate cellular processes, and has demonstrated utility in improving wound healing outcomes, and reducing pain and inflammation. Despite the potential benefits of PBM, the precise molecular mechanisms through which it influences cell behavior are not yet well understood. Inconsistent reporting of key light parameters has created uncertainty around optimal exposure profiles. In addition, very low intensities of light, < 0.1 J/cm2, have not been thoroughly examined for their use in PBM. Here, we present a custom-made compact, and modular LED-based exposure system for studying the effects of very low-intensity visible light (cell proliferation, migration, ROS production, and mitochondrial membrane potential) of three different wavelengths in a parallel manner. The device allows for six repeats of three different exposure conditions plus a non-irradiated control on a single 24-well plate. The immortalised human keratinocyte cell line, HaCaT, was selected as a major cellular component of the skin epidermal barrier. Furthermore, an in vitro wound model was developed by allowing the HaCaT to form a confluent monolayer, then scratching the cells with a pipette tip to form a wound. Cells were exposed to yellow (585 nm, 0.09 mW, ~ 3.7 mJ/cm2), orange (610 nm, 0.8 mW, ~ 31 mJ/cm2), and red (660 nm, 0.8 mW, ~ 31 mJ/cm2) light for 10 min. 48 h post-irradiation, immunohistochemistry was performed to evaluate cell viability, proliferation, ROS production, and mitochondrial membrane potential. The results demonstrate increased proliferation and decreased scratch area for all exposure conditions, however only red light increased the mitochondrial activity. Oxidative stress levels did not increase for any of the exposures. The present exposure system provides opportunities to better understand the complex cellular mechanisms driven by the irradiation of skin cells with visible light.


Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Espécies Reativas de Oxigênio/metabolismo , Queratinócitos/metabolismo , Cicatrização/efeitos da radiação , Proliferação de Células/efeitos da radiação , Luz
2.
Small ; 16(39): e2002515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460277

RESUMO

The role of skin in the human body is indispensable, serving as a barrier, moderating homeostatic balance, and representing a pronounced endpoint for cosmetics and pharmaceuticals. Despite the extensive achievements of in vitro skin models, they do not recapitulate the complexity of human skin; thus, there remains a dependence on animal models during preclinical drug trials, resulting in expensive drug development with high failure rates. By imparting a fine control over the microenvironment and inducing relevant mechanical cues, skin-on-a-chip (SoC) models have circumvented the limitations of conventional cell studies. Enhanced barrier properties, vascularization, and improved phenotypic differentiation have been achieved by SoC models; however, the successful inclusion of appendages such as hair follicles and sweat glands and pigmentation relevance have yet to be realized. The present Review collates the progress of SoC platforms with a focus on their fabrication and the incorporation of mechanical cues, sensors, and blood vessels.


Assuntos
Biomimética , Dispositivos Lab-On-A-Chip , Microfluídica , Pele Artificial , Animais , Biomimética/normas , Biomimética/tendências , Humanos , Dispositivos Lab-On-A-Chip/tendências , Pele Artificial/tendências , Engenharia Tecidual/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...