Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2696: 29-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578713

RESUMO

Pattern recognition receptors, including members of the NLR and ALR families, are essential for recognition of both pathogen- and host-derived danger signals. Several members of these families, including NLRP1, NLRP3, NLRC4, and AIM2, are capable of forming multiprotein complexes, called inflammasomes, that result in the activation of pro-inflammatory caspase-1. However, in addition to the formation of inflammasomes, a number of these family members exert inflammasome-independent functions. Here, we will discuss inflammasome-independent functions of NLRC4, NLRP12, and AIM2 and examine their roles in regulating innate and adaptive immune processes.


Assuntos
Inflamassomos , Receptores de Reconhecimento de Padrão , Humanos , Imunidade , Família , Proteína 3 que Contém Domínio de Pirina da Família NLR
2.
PLoS Pathog ; 18(8): e1010350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36044516

RESUMO

Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Vesículas Extracelulares , Pancreatite , Doença Aguda , Proteínas Reguladoras de Apoptose/genética , Autofagia , Enterovirus/genética , Enterovirus Humano B/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno , Replicação Viral/genética
3.
Infect Immun ; 90(3): e0047021, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35130452

RESUMO

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes nosocomial pneumonia, urinary tract infections, and bacteremia. A hallmark of P. aeruginosa pathogenesis is disruption of host cell function by the type III secretion system (T3SS) and its cognate exoenzyme effectors. The T3SS effector ExoU is phospholipase A2 (PLA2) that targets the host cell plasmalemmal membrane to induce cytolysis and is an important virulence factor that mediates immune avoidance. In addition, ExoU has been shown to subvert the host inflammatory response in a noncytolytic manner. In primary bone marrow-derived macrophages (BMDMs), P. aeruginosa infection is sensed by the nucleotide-binding domain containing leucine-rich repeats-like receptor 4 (NLRC4) inflammasome, which triggers caspase-1 activation and inflammation. ExoU transiently inhibits NLRC4 inflammasome-mediated activation of caspase-1 and its downstream target, interleukin 1ß (IL-1ß), to suppress activation of inflammation. In the present study, we sought to identify additional noncytolytic virulence functions for ExoU and discovered an unexpected association between ExoU, host mitochondria, and NLRC4. We show that infection of BMDMs with P. aeruginosa strains expressing ExoU elicited mitochondrial oxidative stress. In addition, mitochondria and mitochondrion-associated membrane fractions enriched from infected cells exhibited evidence of autophagy activation, indicative of damage. The observation that ExoU elicited mitochondrial stress and damage suggested that ExoU may also associate with mitochondria during infection. Indeed, ExoU phospholipase A2 enzymatic activity was present in enriched mitochondria and mitochondrion-associated membrane fractions isolated from P. aeruginosa-infected BMDMs. Intriguingly, enriched mitochondria and mitochondrion-associated membrane fractions isolated from infected Nlrc4 homozygous knockout BMDMs displayed significantly lower levels of ExoU enzyme activity, suggesting that NLRC4 plays a role in the ExoU-mitochondrion association. These observations prompted us to assay enriched mitochondria and mitochondrion-associated membrane fractions for NLRC4, caspase-1, and IL-1ß. NLRC4 and pro-caspase-1 were detected in enriched mitochondria and mitochondrion-associated membrane fractions isolated from noninfected BMDMs, and active caspase-1 and active IL-1ß were detected in response to P. aeruginosa infection. Interestingly, ExoU inhibited mitochondrion-associated caspase-1 and IL-1ß activation. The implications of ExoU-mediated effects on mitochondria and the NLRC4 inflammasome during P. aeruginosa infection are discussed.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Fosfolipases/metabolismo , Pseudomonas aeruginosa/fisiologia , Sistemas de Secreção Tipo III/metabolismo
4.
Sci Signal ; 14(694)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344832

RESUMO

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor-associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D-dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Assuntos
Inflamassomos , Nucleosídeo Difosfato Quinase D , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361152

RESUMO

The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1ß release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1ß production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.


Assuntos
Cardiolipinas/metabolismo , Interleucina-1alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Autofagia , Cardiolipinas/fisiologia , Caspase 1/metabolismo , Feminino , Células HEK293 , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
PLoS Negl Trop Dis ; 13(5): e0007247, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107882

RESUMO

Cutaneous leishmaniasis (CL) is a parasitic disease causing chronic, ulcerating skin lesions. Most humans infected with the causative Leishmania protozoa are asymptomatic. Leishmania spp. are usually introduced by sand flies into the dermis of mammalian hosts in the presence of bacteria from either the host skin, sand fly gut or both. We hypothesized that bacteria at the dermal inoculation site of Leishmania major will influence the severity of infection that ensues. A C57BL/6 mouse ear model of single or coinfection with Leishmania major, Staphylococcus aureus, or both showed that single pathogen infections caused localized lesions that peaked after 2-3 days for S. aureus and 3 weeks for L. major infection, but that coinfection produced lesions that were two-fold larger than single infection throughout 4 weeks after coinfection. Coinfection increased S. aureus burdens over 7 days, whereas L. major burdens (3, 7, 28 days) were the same in singly and coinfected ears. Inflammatory lesions throughout the first 4 weeks of coinfection had more neutrophils than did singly infected lesions, and the recruited neutrophils from early (day 1) lesions had similar phagocytic and NADPH oxidase capacities. However, most neutrophils were apoptotic, and transcription of immunomodulatory genes that promote efferocytosis was not upregulated, suggesting that the increased numbers of neutrophils may, in part, reflect defective clearance and resolution of the inflammatory response. In addition, the presence of more IL-17A-producing γδ and non-γδ T cells in early lesions (1-7 days), and L. major antigen-responsive Th17 cells after 28 days of coinfection, with a corresponding increase in IL-1ß, may recruit more naïve neutrophils into the inflammatory site. Neutralization studies suggest that IL-17A contributed to an enhanced inflammatory response, whereas IL-1ß has an important role in controlling bacterial replication. Taken together, these data suggest that coinfection of L. major infection with S. aureus exacerbates disease, both by promoting more inflammation and neutrophil recruitment and by increasing neutrophil apoptosis and delaying resolution of the inflammatory response. These data illustrate the profound impact that coinfecting microorganisms can exert on inflammatory lesion pathology and host adaptive immune responses.


Assuntos
Coinfecção/imunologia , Interleucina-17/imunologia , Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Coinfecção/microbiologia , Coinfecção/parasitologia , Coinfecção/patologia , Feminino , Humanos , Interleucina-17/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Leishmania major/genética , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Células Th17/imunologia
7.
Hepatology ; 70(5): 1582-1599, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31044438

RESUMO

Nonalcoholic fatty liver disease (NAFLD) enhances the growth and recurrence of colorectal cancer (CRC) liver metastasis. With the rising prevalence of NAFLD, a better understanding of the molecular mechanism underlying NAFLD-associated liver metastasis is crucial. Tumor-associated macrophages (TAMs) constitute a large portion of the tumor microenvironment that promotes tumor growth. NOD-like receptor C4 (NLRC4), a component of an inflammasome complex, plays a role in macrophage activation and interleukin (IL)-1ß processing. We aimed to investigate whether NLRC4-mediated TAM polarization contributes to metastatic liver tumor growth in NAFLD. Wild-type and NLRC4-/- mice were fed low-fat or high-fat diet for 6 weeks followed by splenic injection of mouse CRC MC38 cells. The tumors were analyzed 2 weeks after CRC cell injection. High-fat diet-induced NAFLD significantly increased the number and size of CRC liver metastasis. TAMs and CD206-expressing M2 macrophages accumulated markedly in tumors in the presence of NAFLD. NAFLD up-regulated the expression of IL-1ß, NLRC4, and M2 markers in tumors. In NAFLD, but not normal livers, deletion of NLRC4 decreased liver tumor growth accompanied by decreased M2 TAMs and IL-1ß expression in tumors. Wild-type mice showed increased vascularity and vascular endothelial growth factor (VEGF) expression in tumors with NAFLD, but these were reduced in NLRC4-/- mice. When IL-1 signaling was blocked by recombinant IL-1 receptor antagonist, liver tumor formation and M2-type macrophages were reduced, suggesting that IL-1 signaling contributes to M2 polarization and tumor growth in NAFLD. Finally, we found that TAMs, but not liver macrophages, produced more IL-1ß and VEGF following palmitate challenge. Conclusion: In NAFLD, NLRC4 contributes to M2 polarization, IL-1ß, and VEGF production in TAMs, which promote metastatic liver tumor growth.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Neoplasias do Colo/patologia , Inflamassomos/fisiologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/secundário , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Feminino , Interleucina-1beta/fisiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL
8.
J Clin Invest ; 129(7): 2888-2897, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038471

RESUMO

Influenza A virus (IAV)-specific T cell responses are important correlates of protection during primary and subsequent infections. Generation and maintenance of robust IAV-specific T cell responses relies on T cell interactions with dendritic cells (DCs). In this study, we explore the role of nucleotide-binding domain leucine-rich repeat containing receptor family member NLRC4 in modulating the DC phenotype during IAV infection. Nlrc4-/- mice had worsened survival and increased viral titers during infection, normal innate immune cell recruitment and IAV-specific CD8 T cell responses, but severely blunted IAV-specific CD4 T cell responses compared to wild-type mice. The defect in the pulmonary IAV-specific CD4 T cell response was not a result of defective priming or migration of these cells in Nlrc4-/- mice but was instead due to an increase in FasL+ DCs, resulting in IAV-specific CD4 T cell death. Together, our data support a novel role for NLRC4 in regulating the phenotype of lung DCs during a respiratory viral infection, and thereby influencing the magnitude of protective T cell responses.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Células Dendríticas/imunologia , Proteína Ligante Fas/imunologia , Regulação da Expressão Gênica/imunologia , Vírus da Influenza A/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação ao Cálcio/genética , Células Dendríticas/patologia , Proteína Ligante Fas/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/patologia
9.
Oncogene ; 38(13): 2351-2363, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30518876

RESUMO

Obesity is a risk factor for breast cancer and also predicts poor clinical outcomes regardless of menopausal status. Contributing to the poor clinical outcomes is the suboptimal efficacy of standard therapies due to dose limiting toxicities and obesity-related complications, highlighting the need to develop novel therapeutic approaches for treating obese patients. We recently found that obesity leads to an increase in tumor-infiltrating macrophages with activated NLRC4 inflammasome and increased interleukin (IL)-1ß production. IL-1ß, in turn, leads to increased angiogenesis and cancer progression. Using Next Generation RNA sequencing, we identified an NLRC4/IL-1ß-dependent upregulation of angiopoietin-like 4 (ANGPTL4), a known angiogenic factor in cancer, in tumors from obese mice. ANGPTL4-deficiency by genetic knockout or treatment with a neutralizing antibody led to a significant reduction in obesity-induced angiogenesis and tumor growth. At a mechanistic level, ANGPTL4 expression is induced by IL-1ß from primary adipocytes in a manner dependent on NF-κB- and MAP kinase-activation, which is further enhanced by hypoxia. This report shows that adipocyte-derived ANGPTL4 drives disease progression under obese conditions and is a potential therapeutic target for treating obese breast cancer patients.


Assuntos
Proteína 4 Semelhante a Angiopoietina/fisiologia , Neoplasias da Mama/patologia , Neovascularização Patológica , Obesidade/complicações , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Inflamassomos/fisiologia , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Obesos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
10.
Cell Host Microbe ; 24(3): 326-328, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212643

RESUMO

Innate pattern recognition receptors have been implicated in the obesity-associated imbalance of gut microbiota. In this issue of Cell Host & Microbe, Truax et al. (2018) report that NLRP12 prevents high-fat-diet-induced obesity by maintaining beneficial short-chain fatty acid-producing microbiota.


Assuntos
Microbioma Gastrointestinal , Dieta Hiperlipídica , Homeostase , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade/prevenção & controle
11.
Lung ; 196(6): 737-743, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30167842

RESUMO

INTRODUCTION: Influenza infects millions of people each year causing respiratory distress and death in severe cases. On average, 200,000 people annually are hospitalized in the United States for influenza related complications. Tissue inhibitor of metalloproteinase-1 (TIMP-1), a secreted protein that inhibits MMPs, has been found to be involved in lung inflammation. Here, we evaluated the role of TIMP-1 in the host response to influenza-induced lung injury. METHODS: Wild-type (WT) and Timp1-deficient (Timp1-/-) mice that were 8-12 weeks old were administered A/PR/8/34 (PR8), a murine adapted H1N1 influenza virus, and euthanized 6 days after influenza installation. Bronchoalveolar lavage fluid and lungs were harvested from each mouse for ELISA, protein assay, PCR, and histological analysis. Cytospins were executed on bronchoalveolar lavage fluid to identify immune cells based on morphology and cell count. RESULTS: WT mice experienced significantly more weight loss compared to Timp1-/- mice after influenza infection. WT mice demonstrated more immune cell infiltrate and airway inflammation. Interestingly, PR8 levels were identical between the WT and Timp1-/- mice 6 days post-influenza infection. CONCLUSION: The data suggest that Timp1 promotes the immune response in the lungs after influenza infection facilitating an injurious phenotype as a result of influenza infection.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Hemorragia/virologia , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/complicações , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Contagem de Eritrócitos , Eritrócitos , Hemorragia/genética , Contagem de Leucócitos , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Infecções por Orthomyxoviridae/virologia , Carga Viral/genética , Redução de Peso/genética
12.
Vet Immunol Immunopathol ; 201: 49-56, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29914682

RESUMO

The inflammasome serves as a mechanism by which the body senses damage or danger. These multiprotein complexes form in the cytosol of myeloid, epithelial and potentially other cell types to drive caspase-1 cleavage and the secretion of the pro-inflammatory cytokines IL-1ß and IL-18. Different types of inflammasomes, centered on (and named after) their cytosolic NLRs, respond to signals from bacteria, fungi, and viruses, as well as "sterile inflammatory" triggers. Despite the large body of research accumulated on rodent and human inflammasomes over the past 15 years, only recently have studies expanded to consider the role of inflammasomes in veterinary and wildlife species. Due to the key role of inflammasomes in mediating inflammatory responses observed in humans and rodents, characterization of the similarities and differences between humans/rodents and veterinary species is required to identify genetic and evolutionary influences on disease responses and to develop therapeutic candidates for use in veterinary inflammatory syndromes. Here, we summarize recent findings on inflammasomes in swine, cattle, dogs, bats, small ruminants, and birds. We describe current gaps in our knowledge and highlight promising areas for future research.


Assuntos
Animais Selvagens/imunologia , Bactérias/imunologia , Infecções Bacterianas/veterinária , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos , Gado/imunologia , Animais , Bactérias/patogenicidade , Infecções Bacterianas/imunologia , Caspase 1/imunologia , Bovinos/imunologia , Quirópteros/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Cães/imunologia , Humanos , Inflamação , Interleucina-1beta/imunologia , Ruminantes/imunologia , Transdução de Sinais/imunologia , Suínos/imunologia
13.
J Immunol ; 200(9): 3047-3052, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602772

RESUMO

The NLRP3 inflammasome is activated in response to microbial and danger signals, resulting in caspase-1-dependent secretion of the proinflammatory cytokines IL-1ß and IL-18. Canonical NLRP3 inflammasome activation is a two-step process requiring both priming and activation signals. During inflammasome activation, NLRP3 associates with mitochondria; however, the role for this interaction is unclear. In this article, we show that mouse NLRP3 and caspase-1 independently interact with the mitochondrial lipid cardiolipin, which is externalized to the outer mitochondrial membrane at priming in response to reactive oxygen species. An NLRP3 activation signal is then required for the calcium-dependent association of the adaptor molecule ASC with NLRP3 on the mitochondrial surface, resulting in inflammasome complex assembly and activation. These findings demonstrate a novel lipid interaction for caspase-1 and identify a role for mitochondria as supramolecular organizing centers in the assembly and activation of the NLRP3 inflammasome.


Assuntos
Cardiolipinas/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cardiolipinas/imunologia , Caspase 1/imunologia , Inflamassomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
14.
J Immunol ; 200(3): 1188-1197, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282312

RESUMO

Exaggerated inflammatory responses during influenza A virus (IAV) infection are typically associated with severe disease. Neutrophils are among the immune cells that can drive this excessive and detrimental inflammation. In moderation, however, neutrophils are necessary for optimal viral control. In this study, we explore the role of the nucleotide-binding domain leucine-rich repeat containing receptor family member Nlrp12 in modulating neutrophilic responses during lethal IAV infection. Nlrp12-/- mice are protected from lethality during IAV infection and show decreased vascular permeability, fewer pulmonary neutrophils, and a reduction in levels of neutrophil chemoattractant CXCL1 in their lungs compared with wild-type mice. Nlrp12-/- neutrophils and dendritic cells within the IAV-infected lungs produce less CXCL1 than their wild-type counterparts. Decreased CXCL1 production by Nlrp12-/- dendritic cells was not due to a difference in CXCL1 protein stability, but instead to a decrease in Cxcl1 mRNA stability. Together, these data demonstrate a previously unappreciated role for Nlrp12 in exacerbating the pathogenesis of IAV infection through the regulation of CXCL1-mediated neutrophilic responses.


Assuntos
Quimiocina CXCL1/metabolismo , Vírus da Influenza A/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Permeabilidade Capilar/genética , Quimiocina CXCL1/genética , Células Dendríticas/imunologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Estabilidade de RNA/genética , RNA Mensageiro/genética
15.
J Clin Invest ; 127(12): 4235-4237, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130931

RESUMO

The NLRP3 inflammasome is a critical component of the innate immune system and can be activated in response to microbial and endogenous danger signals. Activation of the NLRP3 inflammasome results in caspase-1-dependent secretion of the proinflammatory cytokines IL-1ß and IL-18. Gain-of-function missense mutations in NLRP3 result in a group of autoinflammatory diseases collectively known as the cryopyrin-associated periodic syndromes (CAPS). CAPS patients have traditionally been successfully treated with therapeutics targeting the IL-1 pathway; however, there are a number of identified CAPS patients who show only a partial response to IL-1 blockade. In this issue of the JCI, McGeough et al. demonstrated that TNF-α, in addition to IL-1ß, plays an important role in promoting NLRP3 inflammasomopathies.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteínas de Transporte , Humanos , Inflamassomos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Necrose Tumoral alfa
16.
J Infect Dis ; 216(9): 1164-1175, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28968905

RESUMO

The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.


Assuntos
Vírus da Dengue/genética , RNA/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Replicação Viral/genética , Vírus da Febre Amarela/genética , Zika virus/genética , Vírus da Dengue/patogenicidade , Humanos , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade
17.
J Immunol ; 199(8): 2823-2833, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931602

RESUMO

The role of the nucleotide-binding domain and leucine-rich repeat containing receptor NLRP10 in disease is incompletely understood. Using three mouse strains lacking the gene encoding NLRP10, only one of which had a coincidental mutation in DOCK8, we documented a role for NLRP10 as a suppressor of the cutaneous inflammatory response to Leishmania major infection. There was no evidence that the enhanced local inflammation was due to enhanced inflammasome activity. NLRP10/DOCK8-deficient mice harbored lower parasite burdens at the cutaneous site of inoculation compared with wild-type controls, whereas NLRP10-deficient mice and controls had similar parasite loads, suggesting that DOCK8 promotes local growth of parasites in the skin, whereas NLRP10 does not. NLRP10-deficient mice developed vigorous adaptive immune responses, indicating that there was not a global defect in the development of Ag-specific cytokine production. Bone marrow chimeras showed that the anti-inflammatory role of NLRP10 was mediated by NLRP10 expressed in resident cells in the skin rather than by bone marrow-derived cells. These data suggest a novel role for NLRP10 in the resolution of local inflammatory responses during L. major infection.


Assuntos
Anti-Inflamatórios/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Pele/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Pele/parasitologia
18.
Proc Natl Acad Sci U S A ; 114(27): E5444-E5453, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630327

RESUMO

Prostaglandin D2 (PGD2), an eicosanoid with both pro- and anti-inflammatory properties, is the most abundantly expressed prostaglandin in the brain. Here we show that PGD2 signaling through the D-prostanoid receptor 1 (DP1) receptor is necessary for optimal microglia/macrophage activation and IFN expression after infection with a neurotropic coronavirus. Genome-wide expression analyses indicated that PGD2/DP1 signaling is required for up-regulation of a putative inflammasome inhibitor, PYDC3, in CD11b+ cells in the CNS of infected mice. Our results also demonstrated that, in addition to PGD2/DP1 signaling, type 1 IFN (IFN-I) signaling is required for PYDC3 expression. In the absence of Pydc3 up-regulation, IL-1ß expression and, subsequently, mortality were increased in infected DP1-/- mice. Notably, survival was enhanced by IL1 receptor blockade, indicating that the effects of the absence of DP1 signaling on clinical outcomes were mediated, at least in part, by inflammasomes. Using bone marrow-derived macrophages in vitro, we confirmed that PYDC3 expression is dependent upon DP1 signaling and that IFN priming is critical for PYDC3 up-regulation. In addition, Pydc3 silencing or overexpression augmented or diminished IL-1ß secretion, respectively. Furthermore, DP1 signaling in human macrophages also resulted in the up-regulation of a putative functional analog, POP3, suggesting that PGD2 similarly modulates inflammasomes in human cells. These findings demonstrate a previously undescribed role for prostaglandin signaling in preventing excessive inflammasome activation and, together with previously published results, suggest that eicosanoids and inflammasomes are reciprocally regulated.


Assuntos
Coronavirus , Inflamassomos/metabolismo , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Animais , AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Domínios Proteicos , Receptores de Prostaglandina/antagonistas & inibidores , Regulação para Cima
19.
JCI Insight ; 2(3): e88297, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28194433

RESUMO

Excessive ROS promote allergic asthma, a condition characterized by airway inflammation, eosinophilic inflammation, and increased airway hyperreactivity (AHR). The mechanisms by which airway ROS are increased and the relationship between increased airway ROS and disease phenotypes are incompletely defined. Mitochondria are an important source of cellular ROS production, and our group discovered that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is present in mitochondria and activated by oxidation. Furthermore, mitochondrial-targeted antioxidant therapy reduced the severity of allergic asthma in a mouse model. Based on these findings, we developed a mouse model of CaMKII inhibition targeted to mitochondria in airway epithelium. We challenged these mice with OVA or Aspergillus fumigatus. Mitochondrial CaMKII inhibition abrogated AHR, inflammation, and eosinophilia following OVA and A. fumigatus challenge. Mitochondrial ROS were decreased after agonist stimulation in the presence of mitochondrial CaMKII inhibition. This correlated with blunted induction of NF-κB, the NLRP3 inflammasome, and eosinophilia in transgenic mice. These findings demonstrate a pivotal role for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.


Assuntos
Antioxidantes/administração & dosagem , Asma/tratamento farmacológico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Mitocôndrias/enzimologia , Peptídeos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Aspergillus fumigatus/patogenicidade , Asma/etiologia , Asma/genética , Asma/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/efeitos adversos , Peptídeos/farmacologia
20.
Brain Behav Immun ; 62: 137-150, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109896

RESUMO

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polissonografia , Transdução de Sinais/fisiologia , Privação do Sono/genética , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...