Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 17(12): e2006123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590620

RESUMO

Disease manifestation and severity from acute infections are often due to hyper-aggressive host immune responses which change within minutes. Current methods for early diagnosis of infections focus on detecting low abundance pathogens, which are time-consuming, of low sensitivity, and do not reflect the severity of the pathophysiology appropriately. The approach here focuses on profiling the rapidly changing host inflammatory response, which in its over-exuberant state, leads to sepsis and death. A 15-min label-free immune profiling assay from 20 µL of unprocessed blood using unconventional L and Inverse-L shaped pillars of deterministic lateral displacement microfluidic technology is developed. The hydrodynamic interactions of deformable immune cells enable simultaneous sorting and immune response profiling in whole blood. Preliminary clinical study of 85 donors in emergency department with a spectrum of immune response states from healthy to severe inflammatory response shows correlation with biophysical markers of immune cell size, deformability, distribution, and cell counts. The speed of patient stratification demonstrated here has promising impact in deployable point-of-care systems for acute infections triage, risk management, and resource allocation at emergency departments, where clinical manifestation of infection severity may not be clinically evident as compared to inpatients in the wards or intensive care units.


Assuntos
Imunidade , Microfluídica , Biomarcadores , Humanos
2.
Immunother Adv ; 1(1): ltaa002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284899

RESUMO

Ulcerative colitis (UC) is an inflammatory disease of the large bowel which is characterised by dysregulated immunity and death to epithelial cells in the bowel, leading to prolonged inflammation. This can ultimately lead to surgery to remove the large bowel, with a risk of cancer developing if inflammation persists. Current therapies - which target the incoming immune cells or the cytokines they produce - are improving significantly but they are expensive and are immunosuppressive, leading to risk of infection. Here, we discuss a new trial which targets an early inducer of inflammation - the production of reactive oxygen species (ROS) by mitochondria. Previous work has shown that excessive mitochondrial ROS induces inflammatory signalling through the cGAS-STING pathway, leading to dysregulated immunity and death of epithelial cells. In this MARVEL trial (Mitochondrial Anti-oxidant therapy to Resolve Inflammation in Ulcerative Colitis) individuals with an active UC flare-up will be given a mitochondrial anti-oxidant (MitoQ) or placebo tablet in addition to standard medical treatment, in order to suppress inflammation as it develops. This phase 2b trial will repurpose MitoQ, which has been previously tested in other large trials in different disease settings, and will measure clinical response and markers of inflammation over 24 weeks. It is hoped that this trial will develop a new target for UC through re-purposing a relatively cheap, non-toxic and well-characterised drug.

4.
Alcohol Clin Exp Res ; 29(4): 672-82, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15834234

RESUMO

BACKGROUND: As little as a single episode of exposure of the developing brain to ethanol can result in developmental neuropathology and mental retardation. Extracellular signal-regulated kinases (ERKs), protein kinase B (PKB), and adenosine 3':5'-cyclic monophosphate response element binding protein (CREB) are messenger molecules that play important roles in neuronal plasticity and survival. This study was undertaken to examine the effects of acute ethanol on ERK, PKB, and CREB activation in the brain. METHODS: Immunoblot analysis was used to determine the effects of a 1-hr exposure of ethanol on levels of phospho-ERC in primary cortical cultures and in the cerebral cortex, hippocampus, and cerebellum of postnatal day 5 (PN5), postnatal day 21 (PN21), and adult rats. RESULTS: In cortical cultures, ethanol (100 mM) significantly reduced activity-dependent activation of phospho-ERK, phospho-PKB, and phospho-CREB by approximately 50%. In PN5 rats, ethanol (3.5 g/kg) inhibited both phospho-ERK and phospho-PKB in the cerebral cortex and hippocampus but was without effect in the cerebellum. A similar brain region-specific inhibition of phospho-ERK was observed in PN21 rats, whereas in adult rats, ethanol inhibited phospho-ERK in all three brain regions. In contrast, ethanol had no effect on phospho-PKB in either PN21 or adult rats. Without exception, ethanol inhibited phospho-CREB in an identical brain region- and age-dependent manner as was observed for phospho-ERK. Finally, administration of the NMDA antagonist MK-801 (0.5 mg/kg) to PN5 rats had no effect on phospho-ERK or phospho-PKB levels in any brain region. CONCLUSION: The results demonstrate that acute ethanol inhibits ERK/PKB/CREB signaling in brain. This inhibition occurs in an age- and brain region-specific manner, with inhibition of PKB restricted to a time during the brain growth-spurt period. Furthermore, the lack of effect of MK-801 suggests that inhibition of NMDA receptors is unlikely to play a major role in binge ethanol inhibition of ERK/PKB/CREB signaling in vivo.


Assuntos
Envelhecimento/fisiologia , Química Encefálica/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Etanol/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/sangue , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Maleato de Dizocilpina/farmacologia , Eletroforese em Gel de Poliacrilamida , Etanol/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mesotelina , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley
5.
J Neurochem ; 82(5): 1097-105, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12358757

RESUMO

The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 micro m) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Quelantes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia
6.
J Exp Biol ; 205(Pt 14): 2029-51, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12089208

RESUMO

Two kinematic models of the radula/odontophore of the marine mollusc Aplysia californica were created to characterize the movement of structures inside the buccal mass during the feeding cycle in vivo. Both models produce a continuous range of three-dimensional shape changes in the radula/odontophore, but they are fundamentally different in construction. The radulacentric model treats the radular halves as rigid bodies that can pitch, yaw and roll relative to a fixed radular stalk, thus creating a three-dimensional shape. The odontophore-centric model creates a globally convex solid representation of the radula/odontophore directly, which then constrains the positions and shapes of internal structures. Both radula/odontophore models are placed into a pre-existing kinematic model of the I1/I3 and I2 muscles to generate three-dimensional representations of the entire buccal mass. High-temporal-resolution, mid-sagittal magnetic resonance (MR) images of swallowing adults in vivo are used to provide non-invasive, artifact-free shape and position parameter inputs for the models. These images allow structures inside the buccal mass to be visualized directly, including the radula, radular stalk and lumen of the I1/I3 cavity. Both radula-centric and odontophore-centric models were able to reproduce two-dimensional, mid-sagittal radula/odontophore and buccal mass kinematics, but the odontophore-centric model's predictions of I1/I3, I2 and I7 muscle dimensions more accurately matched data from MR-imaged adults and transilluminated juveniles.


Assuntos
Aplysia/fisiologia , Deglutição/fisiologia , Animais , Aplysia/anatomia & histologia , Aplysia/crescimento & desenvolvimento , Fenômenos Biomecânicos , Imageamento por Ressonância Magnética , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...