Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 47(19): 3494-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594596

RESUMO

A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5 nm (2 omega) by frequency converting the fundamental 1053 nm (1 omega) wavelength with an 18.2 mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9 kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2 omega energy of 3.4 MJ full NIF equivalent (FNE).

2.
Appl Opt ; 46(16): 3276-303, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514286

RESUMO

The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.

3.
Opt Lett ; 25(11): 805-7, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18064190

RESUMO

We describe a diode-pumped Yb:YAG laser that produces 1080 W of power cw with 27.5% optical optical efficiency and 532 W Q-switched with M(2)=2.2 and 17% optical-optical efficiency. The laser uses two composite Yb:YAG rods separated by a 90 degrees quartz rotator for bifocusing compensation. A microlensed diode array end pumps each rod, using a hollow lens duct for pump delivery. By changing resonator parameters we can adjust the fundamental mode size and the output beam quality. Using a flattened Gaussian intensity profile to calculate the mode-fill efficiency and clipping losses, we compare experimental data with modeled output power versus beam quality.

4.
Appl Opt ; 35(30): 5937-48, 1996 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21127605

RESUMO

We provide an approximate but simple analytical solution to the radial distribution of deposited energy in a diode-array-pumped laser rod, subject to some assumptions that are naturally fulfilled for most applications of practical interest. The solution is useful to survey quickly irradiance distributions for a wide variety of pumping geometries and to find the radially most uniform energy deposition. We find that the radial deposition profile, as well as the pump light absorption efficiency, is largely controlled by just two dimensionless parameters: the number of absorption depths and the ratio of the width of the unabsorbed pump beam at the rod center divided by the rod radius. A side-by-side comparison with a numerical model is given. Results describing the best achievable trade-off between absorption efficiency and pumping uniformity are presented in the form of a recipe that can be followed without studying our research in detail. Finally, the model equations are applied to a practical side-pumped geometry.

5.
Opt Lett ; 19(20): 1627-9, 1994 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19855603

RESUMO

A tunable Er:YAG laser, side pumped by a quasi-cw InGaAs diode array, generates > 500 mW of power at 2.936 microm. The cavity is a 4-cm plano-concave resonator that uses total internal reflection on the pump face of the Er:YAG crystal to couple the diode emission into the resonating modes of the oscillator. Tuning is accomplished by angle tuning a 300-microm-thick YAG étalon. The tuning range is 2.933-2.939 microm. Thermal lensing limits the duty factor to 4% or 8%, depending on the Er:YAG crystal thickness (2 or 1 mm). A 2.5-cm-long resonator operates at an 11% duty factor and generates 1.3 W of average power.

6.
Appl Opt ; 32(27): 5256-69, 1993 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20856333

RESUMO

We explore the thermo-optical issues of mode-matched end-pumped lasers. A combination of analytical and numerical methods is used to extract practically useful scaling relations that characterize the thermally induced optical distortions and the thermal-stress operating limits in rod lasers pumped with super-Gaussian sources. The thermally induced spherical aberration is found to be overcorrected (focal length increases with radial position), weakly dependent on the axial profile, and strongly dependent on the super-Gaussian order. For high-order radial profiles it is shown that a significant portion of the extraction beam will operate aberration free. The effect of aberrations on cavity stability is addressed for the simple case of a cavity with a length that is equal to the rod length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...