Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(11): 2094-2126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600241

RESUMO

A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fase G2/genética , Centrossomo/metabolismo , Divisão Celular , Ciclinas/metabolismo , Ciclinas/genética
2.
mBio ; : e0251323, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966241

RESUMO

IMPORTANCE: The Golgi is an essential eukaryotic organelle and a major place for protein sorting and glycosylation. Among apicomplexan parasites, Toxoplasma gondii retains the most developed Golgi structure and produces many glycosylated factors necessary for parasite survival. Despite its importance, Golgi function received little attention in the past. In the current study, we identified and characterized the conserved oligomeric Golgi complex and its novel partners critical for protein transport in T. gondii tachyzoites. Our results suggest that T. gondii broadened the role of the conserved elements and reinvented the missing components of the trafficking machinery to accommodate the specific needs of the opportunistic parasite T. gondii.

3.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37448010

RESUMO

Various methods of spatial redundancy can be used in local networks based on the SpaceFibre standard for fault mitigation of network hardware and physical communication channels. Usually, a network developer chooses the method of spatial redundancy according to the number of failures that have to be mitigated, the time required for restoring the normal operation of the network, required overheads and hardware costs. The use of different spatial redundancy mechanisms can cause changes in the structure of the links between network nodes, in case of failure and subsequent mitigation. In turn, this may cause changes in the broadcast transmission paths and the temporal characteristics of their delivery from the source to the receivers. This article focuses on the change in the propagation time of broadcasts in SpaceFibre networks with spatial redundancy. Broadcast propagation rules significantly differ from data-packet propagation rules. Broadcast distribution time is very important for many applications, because broadcasts are generally used to send urgent messages, in particular for time synchronization. Various formal methods have been used to evaluate the propagation characteristics of the broadcast. A method for estimating broadcast propagation time along the shortest routes is proposed. In addition, we provide a formal method to estimate the number of failures, which occurred in the network during the broadcast propagation. This method is based on timed Petri nets; one of its features is the ability to calculate broadcast transmission delays. In addition, as an alternative solution, we propose a method for estimating delays based on time automata theory.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296797

RESUMO

This work reports experimental results of the quantitative determination of oxygen and band gap measurement in the TiNx electrodes in planar TiNx top/La:HfO2/TiNx bottom MIM stacks obtained by plasma enhanced atomic layer deposition on SiO2. Methodological aspects of extracting structural and chemical information from (scanning) transmission electron microscopy imaging (bright field and high angular annular dark field), energy dispersive X-ray spectrometry and electron energy loss spectroscopy are thoroughly considered. The study shows that the oxygen concentration is higher in the TiNxOy bottom electrode (about 14.2 ± 0.1 at. %) compared to the TiNxOy top electrode (about 11.4 ± 0.5 at. %). The following average stoichiometric formulas are TiN0.52O0.20 top and TiN0.54O0.26 bottom for top and bottom electrodes, respectively. The amount of oxygen incorporated into TiNx during PEALD because of oxygen impurities in the plasma is minor compared to that because of diffusion from SiO2 and HfO2. This asymmetry, together with results on a sample grown on a Si substrate, shows that incorporating oxygen impurity from the plasma itself is a minor part compared to diffusion from the SiO2 substrate and HfO2 dielectric during the PEALD growth. We observe the presence of TiO2 at the interface between the Hf oxide layer and the Ti nitride electrodes as well as at the SiO2 interface. EELS analysis led to a band gap ranging from 2.2 to 2.5 eV for the bottom TiNxOy and 1.7-2.2 eV for the top TiNxOy, which is in fair agreement with results obtained on the top TiNx electrode (1.6 ± 01 eV) using optical absorption spectra. Measurement of sheet resistance, resistivity and temperature coefficient of resistance by a four-point probe on the top TiNxOy electrode from 20 to 100 °C corresponds to the typical values for semiconductors.

5.
Microbiol Spectr ; 10(3): e0070222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652638

RESUMO

Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Ciclo Celular , Diferenciação Celular , Ciclinas/metabolismo , Humanos , Ratos , Toxoplasma/genética
7.
mBio ; 13(1): e0356121, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130726

RESUMO

Opportunistic parasites of the Apicomplexa phylum use a variety of division modes built on two types of cell cycles that incorporate two distinctive mechanisms of mitosis: uncoupled from and coupled to parasite budding. Parasites have evolved novel factors to regulate such unique replication mechanisms that are poorly understood. Here, we have combined genetics, quantitative fluorescence microscopy, and global proteomics approaches to examine endodyogeny in Toxoplasma gondii dividing by mitosis coupled to cytokinesis. In the current study, we focus on the steps controlled by the recently described atypical Cdk-related kinase T. gondii Crk6 (TgCrk6). While inspecting protein complexes, we found that this previously orphaned TgCrk6 kinase interacts with a parasite-specific atypical cyclin, TgCyc1. We built conditional expression models and examined primary cell cycle defects caused by the lack of TgCrk6 or TgCyc1. Quantitative microscopy assays revealed that tachyzoites deficient in either TgCrk6 or the cyclin partner TgCyc1 exhibit identical mitotic defects, suggesting cooperative action of the complex components. Further examination of the mitotic structures indicated that the TgCrk6/TgCyc1 complex regulates metaphase. This novel finding confirms a functional spindle assembly checkpoint (SAC) in T. gondii. Measuring global changes in protein expression and phosphorylation, we found evidence that canonical activities of the Toxoplasma SAC are intertwined with parasite-specific tasks. Analysis of phosphorylation motifs suggests that Toxoplasma metaphase is regulated by CDK, mitogen-activated kinase (MAPK), and Aurora kinases, while the TgCrk6/TgCyc1 complex specifically controls the centromere-associated network. IMPORTANCE The rate of Toxoplasma tachyzoite division directly correlates with the severity of the disease, toxoplasmosis, which affects humans and animals. Thus, a better understanding of the tachyzoite cell cycle would offer much-needed efficient tools to control the acute stage of infection. Although tachyzoites divide by binary division, the cell cycle architecture and regulation differ significantly from the conventional binary fission of their host cells. Unlike the unidirectional conventional cell cycle, the Toxoplasma budding cycle is braided and is regulated by multiple essential Cdk-related kinases (Crks) that emerged in the place of missing conventional cell cycle regulators. How these novel Crks control apicomplexan cell cycles is largely unknown. Here, we have discovered a novel parasite-specific complex, TgCrk6/TgCyc1, that orchestrates a major mitotic event, the spindle assembly checkpoint. We demonstrated that tachyzoites incorporated parasite-specific tasks in the canonical checkpoint functions.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
8.
Curr Opin Microbiol ; 58: 99-105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33065371

RESUMO

The life cycle of Toxoplasma gondii is characterized by active replication alternating with periods of rest. Encysted dormant sporozoites and bradyzoites initiate active replication as tachyzoites and merozoites. Here we explore the role of the cell cycle with a focus on the canonical G1 RESTRICTION checkpoint (R-point) as the integrator governing developmental decisions in T. gondii. This surveillance mechanism, which licenses replication, creates a window of opportunity in G1 for cellular reorganization in the execution of developmental transitions. We also explore the unique status of the bradyzoite, the only life cycle stage executing both a forward (entry into the sexual cycle) and reverse (recrudescence) developmental transitions as a multipotent cell. These opposing decisions are executed through the common machinery of the RESTRICTION checkpoint.


Assuntos
Pontos de Checagem do Ciclo Celular , Toxoplasma/citologia , Animais , Humanos , Estágios do Ciclo de Vida , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
10.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266727

RESUMO

Chromate is one of the major anthropogenic contaminants on Earth. Leucobacter chromiiresistens is a highly chromate-resistant strain, tolerating chromate concentrations in LB medium of up to 400 mM. In response to chromate stress, L. chromiiresistens forms biofilms, which are held together via extracellular DNA. Inhibition of biofilm formation leads to drastically decreased chromate tolerance. Moreover, chromate is reduced intracellularly to the less-toxic Cr(III). The oxidation status and localization of chromium in cell aggregates were analyzed by energy-dispersive X-ray spectroscopy coupled to scanning transmission electron microscopy and X-ray absorption spectroscopy measurements. Most of the heavy metal is localized as Cr(III) at the cytoplasmic membrane. As a new cellular response to chromate stress, we observed an increased production of the carotenoid lutein. Carotenoid production could increase membrane stability and reduce the concentration of reactive oxygen species. Bioinformatic analysis of the L. chromiiresistens genome revealed several gene clusters that could enable heavy-metal resistance. The extreme chromate tolerance and the unique set of resistance factors suggest the use of L. chromiiresistens as a new model organism to study microbial chromate resistance.IMPORTANCE Chromate is a highly toxic oxyanion. Extensive industrial use and inadequate waste management has caused the toxic pollution of several field sites. Understanding the chromate resistance mechanisms that enable organisms to thrive under these conditions is fundamental to develop (micro)biological strategies and applications aiming at bioremediation of contaminated soils or waters. Potential detoxifying microorganisms are often not sufficient in their resistance characteristics to effectively perform, e.g., chromate reduction or biosorption. In this study, we describe the manifold strategies of L. chromiiresistens to establish an extremely high level of chromate resistance. The multitude of mechanisms conferring it make this organism suitable for consideration as a new model organism to study chromate resistance.


Assuntos
Actinomycetales/metabolismo , Cromatos/metabolismo , Actinomycetales/genética , Biodegradação Ambiental , Membrana Celular/genética , Membrana Celular/metabolismo , Cromo/metabolismo , Oxirredução , Espectroscopia por Absorção de Raios X
11.
Trends Parasitol ; 34(9): 759-771, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30078701

RESUMO

Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.


Assuntos
Apicomplexa/citologia , Apicomplexa/fisiologia , Ciclo Celular , Interações Hospedeiro-Parasita , Infecções por Protozoários/parasitologia
12.
Environ Sci Technol ; 52(6): 3431-3439, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29451383

RESUMO

Arsenic contamination in groundwater is pervasive throughout deltaic regions of Southeast Asia and threatens the health of millions. The speciation of As in sediments overlying contaminated aquifers is poorly constrained. Here, we investigate the chemical and mineralogical compositions of sediment cores collected from the Mekong Delta in Vietnam, elucidate the speciation of iron and arsenic, and relate them to the sediment depositional environment. Gradual dissolution of ferric (oxyhydr)oxides with depth is observed down to 7 m, corresponding to the establishment of reducing conditions. Within the reduced sediment, layers originating from marine, coastal or alluvial depositional environments are identified and their age is consistent with a late Holocene transgression in the Mekong Delta. In the organic matter- and sulfur-rich layers, arsenic is present in association with organic matter through thiol-bonding and in the form of arsenian pyrite. The highest arsenic concentration (34-69 ppm) is found in the peat layer at 16 m and suggests the accumulation of arsenic due to the formation of thiol-bound trivalent arsenic (40-55%) and arsenian pyrite (15-30%) in a paleo-mangrove depositional environment (∼8079 yr BP). Where sulfur is limited, siderite is identified, and oxygen- and thiol-bound trivalent arsenic are the predominant forms. It is also worth noting that pentavalent arsenic coordinated to oxygen is ubiquitous in the sediment profile, even in reduced sediment layers. But the identity of the oxygen-bound arsenic species remains unknown. This work shows direct evidence of thiol-bound trivalent arsenic in the Mekong Delta sediments and provides insight to refine the current model of the origin, deposition, and release of arsenic in the alluvial aquifers of the Mekong Delta.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Vietnã
13.
ACS Appl Mater Interfaces ; 9(49): 43370-43376, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29160064

RESUMO

Because of their compatibility with modern Si-based technology, HfO2-based ferroelectric films have recently attracted attention as strong candidates for applications in memory devices, in particular, ferroelectric field-effect transistors or ferroelectric tunnel junctions. A key property defining the functionality of these devices is the polarization dependent change of the electronic band alignment at the metal/ferroelectric interface. Here, we report on the effect of polarization reversal in functional ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors on the potential distribution across the stack and the electronic band line-up at the interfaces studied in operando by hard X-ray photoemission spectroscopy. By tracking changes in the position of Hf0.5Zr0.5O2 core-level lines with respect to those of the TiN electrode in both short- and open-circuit configurations following in situ polarization reversal, we derive the conduction band offset to be 0.7 (1.0) eV at the top and 1.7 (1.0) eV at the bottom interfaces for polarization, pointing up (down), respectively. Energy dispersive X-ray spectroscopy profiling of the sample cross-section in combination with the laboratory X-ray photoelectron spectroscopy reveal the presence of a TiOx/TiON layer at  both interfaces. The observed asymmetry in the band line-up changes in the TiN/Hf0.5Zr0.5O2/TiN memory stack is explained by different origin of these oxidized layers and effective pinning of polarization at the top interface. The described methodology and first experimental results are useful for the optimization of HfO2-based ferroelectric memory devices under development.

14.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830940

RESUMO

Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling this knowledge gap cannot be accomplished by mining recent whole-genome sequencing data because apicomplexan cell cycles differ substantially and lack many of the key regulatory factors of well-studied yeast and mammalian cell division models. We have utilized forward genetics to discover essential factors that regulate cell division in these parasites using the Toxoplasma gondii model. An example of this approach is described here with the discovery of a putative E3 ligase/protein kinase mechanism involved in regulating chromosome replication and mitotic processes of asexual stage parasites.


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica , Proteínas de Protozoários/metabolismo , Fuso Acromático/metabolismo , Toxoplasma/genética , Toxoplasma/fisiologia , Pontos de Checagem do Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/genética , Cromossomos/fisiologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , DNA Topoisomerases/genética , DNA Topoisomerases/metabolismo , Mitose , Membrana Nuclear/genética , Proteínas de Protozoários/genética , Toxoplasmose/parasitologia , Ubiquitina-Proteína Ligases/metabolismo
15.
Microsc Res Tech ; 80(10): 1113-1122, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28699651

RESUMO

The practical need for a simple and reliable tool for routine size analysis of nanoparticles with diameters down to a few nm embedded in a polymer matrix motivated the development of a new approach. The idea underlying the method proposed in this work is to combine intensity thresholding and contrast fitting procedures in the same software for particle recognition and measurements of sizes and size distributions of nanoparticles in transmission and scanning transmission electron microscopy images. Particle recognition in images is performed in an interactive process of manual setting the numerical threshold level after image preprocessing. We show that fitting the calculated gray level distribution to the real images is able to provide a maximum accuracy in measurements of the particle diameters in contrast to thresholding approaches. The fitting procedure is applied in the vicinity of nanoparticle images with the mass-thickness, diffraction, and chemical contrast. The grayscale function associated to the nanoparticle thickness is described using polynomial gt=g0+g1t+g2t2+g3t3… with degree ⩾ 2 and undetermined coefficients. The program for particle detection and size measurement-Analyzer of Nanoparticles (AnNa)-has been written and is described here. It was successfully tested on systems containing Ag nanoparticles grown and stabilized in aqueous solutions of different polymers for biomedical use and is available from the authors.

16.
PLoS Pathog ; 13(7): e1006483, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671988

RESUMO

The unusual cell cycles of Apicomplexa parasites are remarkably flexible with the ability to complete cytokinesis and karyokinesis coordinately or postpone cytokinesis for several rounds of chromosome replication, and are well recognized. Despite this surprising biology, the molecular machinery required to achieve this flexibility is largely unknown. In this study, we provide comprehensive experimental evidence that apicomplexan parasites utilize multiple Cdk-related kinases (Crks) to coordinate cell division. We determined that Toxoplasma gondii encodes seven atypical P-, H-, Y- and L- type cyclins and ten Crks to regulate cellular processes. We generated and analyzed conditional tet-OFF mutants for seven TgCrks and four TgCyclins that are expressed in the tachyzoite stage. These experiments demonstrated that TgCrk1, TgCrk2, TgCrk4 and TgCrk6, were required or essential for tachyzoite growth revealing a remarkable number of Crk factors that are necessary for parasite replication. G1 phase arrest resulted from the loss of cytoplasmic TgCrk2 that interacted with a P-type cyclin demonstrating that an atypical mechanism controls half the T. gondii cell cycle. We showed that T. gondii employs at least three TgCrks to complete mitosis. Novel kinases, TgCrk6 and TgCrk4 were required for spindle function and centrosome duplication, respectively, while TgCrk1 and its partner TgCycL were essential for daughter bud assembly. Intriguingly, mitotic kinases TgCrk4 and TgCrk6 did not interact with any cyclin tested and were instead dynamically expressed during mitosis indicating they may not require a cyclin timing mechanism. Altogether, our findings demonstrate that apicomplexan parasites utilize distinctive and complex mechanisms to coordinate their novel replicative cycles.


Assuntos
Pontos de Checagem do Ciclo Celular , Divisão Celular , Toxoplasma/citologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Mitose , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
17.
mBio ; 7(3)2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27247232

RESUMO

UNLABELLED: Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. IMPORTANCE: Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Estágios do Ciclo de Vida/genética , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Encéfalo/parasitologia , Proteínas Quinases Dependentes de AMP Cíclico/química , Teste de Complementação Genética , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida/fisiologia , Camundongos , Mutação , Transdução de Sinais , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética
18.
Scanning ; 38(6): 757-765, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27171920

RESUMO

Preparation of composites with different properties and gradient of components is aimed at better performance of materials for bone substitution. Bacterial cellulose-hydroxyapatite (BC-HAP) composites with various mass ratio of the components (BC-25HAP, BC-4HAP, and BC-HAP) were prepared by a novel method of growing HAP nanocrystals (the linear size ≤30 nm) in water solutions in the presence of the BC gel-film micro-fragments. Varying the BC-HAP ratios leads to a gradual change of the physical properties of the materials. It was found that an increase in the BC content results in a decrease of the HAP crystal length and specific surface area, porosity, and pore volume while the values of density and Young's modulus values increase. SCANNING 38:757-765, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Durapatita/química , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanocompostos/química , Módulo de Elasticidade , Porosidade
19.
ACS Appl Mater Interfaces ; 8(11): 7232-7, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26931409

RESUMO

Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.

20.
mBio ; 7(1): e02094-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838719

RESUMO

UNLABELLED: The arginine methyltransferase family (PRMT) has been implicated in a variety of cellular processes, including signal transduction, epigenetic regulation, and DNA repair pathways. PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. To further define the biological function of the PRMT family, we generated T. gondii mutants lacking PRMT1 (Δprmt1) by deletion of the PRMT1 gene. Δprmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the Δprmt::PRMT1mRFP complemented strain. Tagged PRMT1 localizes primarily in the cytoplasm with enrichment at the pericentriolar material, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, Δprmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole-genome expression profiling demonstrated differences in expression of cell-cycle-regulated genes in the Δprmt1 strain relative to the complemented Δprmt1::PRMT1mRFP and parental wild-type strains, but these changes do not correlate with a specific block in cell cycle. Although PRMT1's primary biological function was previously proposed to be methylation of histones, our studies suggest that PRMT1 plays an important role within the centrosome to ensure the proper replication of the parasite. IMPORTANCE: Apicomplexan parasites include several important pathogens, including Toxoplasma gondii, a major cause of opportunistic infections and congenital birth defects. These parasites divide using a unique form of cell division called endodyogeny that is different from those of most eukaryotes. PRMT1 is a conserved arginine methyltransferase that was thought to regulate gene expression of T. gondii by modifying histone methylation. Using genetic techniques, we show that disruption of PRMT1 affects the parasite's ability to perform accurate cell division. Our studies reveal an unexpected role for arginine methylation in centrosome biology and regulation of parasite replication.


Assuntos
Divisão Celular , Centrossomo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína-Arginina N-Metiltransferases/genética , Toxoplasma/citologia , Toxoplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...