Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37130250

RESUMO

Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30371366

RESUMO

Exploiting intrinsic structures in sparse signals underpins the recent progress in compressive sensing (CS). The key for exploiting such structures is to achieve two desirable properties: generality (i.e., the ability to fit a wide range of signals with diverse structures) and adaptability (i.e., being adaptive to a specific signal). Most existing approaches, however, often only achieve one of these two properties. In this study, we propose a novel adaptive Markov random field sparsity prior for CS, which not only is able to capture a broad range of sparsity structures, but also can adapt to each sparse signal through refining the parameters of the sparsity prior with respect to the compressed measurements. To maximize the adaptability, we also propose a new sparse signal estimation where the sparse signals, support, noise and signal parameter estimation are unified into a variational optimization problem, which can be effectively solved with an alternative minimization scheme. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed method in recovery accuracy, noise tolerance, and runtime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...