Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(26): 12474-12481, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38860292

RESUMO

Efficient and environmentally friendly synthesis of silanols is a crucial issue across the broad fields of academic and industrial chemistry. Herein, we describe the dehydrogenative oxidation of hydrosilane using a gold nanoparticle catalyst supported by fibrillated citric acid-modified cellulose (F-CAC). Au:F-CAC catalysts with various particle sizes (1.7 nm, 4.9 nm, and 7.7 nm) were prepared using the trans-deposition method, a technique previously reported by our group. These catalysts exhibited significant catalytic activity to produce silanols with high turnover frequency (TOF) of up to 7028 h-1. Recycling experiments and transmission electron microscopy (TEM) observation represented the high durability of Au:F-CAC under the reaction conditions, allowing kinetic studies on size dependency. Mechanistic studies were conducted, including isotope labelling experiments, kinetics, and various spectroscopies. Notably, the near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) of the model catalyst (Au:PVP) revealed the formation of catalytically active cationic Au sites on the surface through the adsorption of molecular oxygen, providing a new insight into the reaction mechanism.

2.
Sci Rep ; 12(1): 20602, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446845

RESUMO

Gold nanoparticles stabilised by fibrillated citric acid-modified cellulose (Au:F-CAC) catalyse the intramolecular cycloamination of amines to unactivated alkenes under an aerobic atmosphere to afford pyrrolidine derivatives. Only 0.2 mol% of Au loading is required to complete the reaction. The high sensitivity of the Au:F-CAC catalyst to the substitution pattern of alkenes allows a unique chemoselective cycloamination, affording new compounds.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Celulose , Catálise , Arritmias Cardíacas , Alcenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...