Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2864, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806315

RESUMO

Platelets play a crucial role in cancer and thrombosis. However, the receptor-ligand repertoire mediating prostate cancer (PCa) cell-platelet interactions and ensuing consequences have not been fully elucidated. Microvilli emanating from the plasma membrane of PCa cell lines (RC77 T/E, MDA PCa 2b) directly contacted individual platelets and platelet aggregates. PCa cell-platelet interactions were associated with calcium mobilization in platelets, and translocation of P-selectin and integrin αIIbß3 onto the platelet surface. PCa cell-platelet interactions reciprocally promoted PCa cell invasion and apoptotic resistance, and these events were insensitive to androgen receptor blockade by bicalutamide. PCa cells were exceedingly sensitive to activation by platelets in vitro, occurring at a PCa cell:platelet coculture ratio as low as 1:10 (whereas PCa patient blood contains 1:2,000,000 per ml). Conditioned medium from cocultures stimulated PCa cell invasion but not apoptotic resistance nor platelet aggregation. Candidate transmembrane signaling proteins responsible for PCa cell-platelet oncogenic events were identified by RNA-Seq and broadly divided into 4 major categories: (1) integrin-ligand, (2) EPH receptor-ephrin, (3) immune checkpoint receptor-ligand, and (4) miscellaneous receptor-ligand interactions. Based on antibody neutralization and small molecule inhibitor assays, PCa cell-stimulated calcium mobilization in platelets was found to be mediated by a fibronectin1 (FN1)-αIIbß3 signaling axis. Platelet-stimulated PCa cell invasion was facilitated by a CD55-adhesion G protein coupled receptor E5 (ADGRE5) axis, with contribution from platelet cytokines CCL3L1 and IL32. Platelet-stimulated PCa cell apoptotic resistance relied on ephrin-EPH receptor and lysophosphatidic acid (LPA)-LPA receptor (LPAR) signaling. Of participating signaling partners, FN1 and LPAR3 overexpression was observed in PCa specimens compared to normal prostate, while high expression of CCR1 (CCL3L1 receptor), EPHA1 and LPAR5 in PCa was associated with poor patient survival. These findings emphasize that non-overlapping receptor-ligand pairs participate in oncogenesis and thrombosis, highlighting the complexity of any contemplated clinical intervention strategy.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Ligantes , Receptor EphA1 , Integrinas
2.
J Leukoc Biol ; 109(4): 807-820, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663904

RESUMO

In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFß, ß2-microglobulin, and IL-1ß and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células Dendríticas/citologia , Monócitos/citologia , Adolescente , Adulto , Idoso , Movimento Celular , Citocinas/metabolismo , Células Dendríticas/ultraestrutura , Endotélio/metabolismo , Feminino , Infecções por HIV/imunologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Linfócitos T/imunologia , Adulto Jovem
3.
J Am Heart Assoc ; 9(17): e015998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819189

RESUMO

Background Microvesicles are cell membrane-derived vesicles that have been shown to augment inflammation. Specifically, monocyte-derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV-infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV-encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.


Assuntos
Antivirais/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Micropartículas Derivadas de Células/genética , Infecções por HIV/metabolismo , Adulto , Animais , Fatores de Coagulação Sanguínea/metabolismo , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Antígeno 2 do Estroma da Médula Óssea/ultraestrutura , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/virologia , Feminino , HIV/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica/métodos , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/metabolismo , Prevalência , Proteínas Virais Reguladoras e Acessórias/metabolismo
4.
Sci Rep ; 9(1): 2781, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808933

RESUMO

Neurotrophin signaling modulates the differentiation and function of mature blood cells. The expression of neurotrophin receptors and ligands by hematopoietic and stromal cells of the bone marrow indicates that neurotrophins have the potential to regulate hematopoietic cell fate decisions. This study investigates the role of neurotrophins and Tropomyosin receptor kinases (Trk) in the development of megakaryocytes (MKs) and their progeny cells, platelets. Results indicate that primary human MKs and MK cells lines, DAMI, Meg-01 and MO7e express TrkA, the primary receptor for Nerve Growth Factor (NGF) signaling. Activation of TrkA by NGF enhances the expansion of human MK progenitors (MKPs) and, to some extent, MKs. Whereas, inhibition of TrkA receptor by K252a leads to a 50% reduction in the number of both MKPs and MKs and is associated with a 3-fold increase in the production of platelets. In order to further confirm the role of TrkA signaling in platelet production, TrkA deficient DAMI cells were generated using CRISPR-Cas9 technology. Comparative analysis of wild-type and TrkA-deficient Dami cells revealed that loss of TrkA signaling induced apoptosis of MKs and increased platelet production. Overall, these findings support a novel role for TrkA signaling in platelet production and highlight its potential as therapeutic target for Thrombocytopenia.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Proliferação de Células , Megacariócitos/citologia , Receptor trkA/metabolismo , Trombopoese , Apoptose , Plaquetas/metabolismo , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Humanos , Megacariócitos/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Receptor trkA/genética , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29358288

RESUMO

Candida albicans, a prevailing opportunistic fungal pathogen of humans, has a diploid genome containing three homologous FKS genes that are evolutionarily conserved. One of these, the essential gene FKS1, encodes the catalytic subunit of glucan synthase, which is the target of echinocandin drugs and also serves as a site of drug resistance. The other two glucan synthase-encoding genes, FKS2 and FKS3, are also expressed, but their roles in resistance are considered unimportant. However, we report here that expression of FKS1 is upregulated in strains lacking either FKS2 or FKS3 Furthermore, in contrast to what is observed in heterozygous FKS1 deletion strains, cells lacking FKS2 or FKS3 contain increased amounts of cell wall glucan, are more resistant to echinocandin drugs, and consistently are tolerant to cell wall-damaging agents. Our data indicate that C. albicansFKS2 and FKS3 can act as negative regulators of FKS1, thereby influencing echinocandin susceptibility.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Glucosiltransferases/genética , Humanos
6.
Antimicrob Agents Chemother ; 60(12): 7457-7467, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736768

RESUMO

Candida albicans is an important fungal pathogen with a diploid genome that can adapt to caspofungin, a major drug from the echinocandin class, by a reversible loss of one copy of chromosome 5 (Ch5). Here, we explore a hypothesis that more than one gene for negative regulation of echinocandin tolerance is carried on Ch5. We constructed C. albicans strains that each lacked one of the following Ch5 genes: CHT2 for chitinase, PGA4 for glucanosyltransferase, and CSU51, a putative transcription factor. We demonstrate that independent deletion of each of these genes increased tolerance for caspofungin and anidulafungin, another echinocandin. Our data indicate that Ch5 carries multiple genes for negative control of echinocandin tolerance, although the final number has yet to be established.


Assuntos
Candida albicans/efeitos dos fármacos , Cromossomos Fúngicos/química , Farmacorresistência Fúngica/genética , Tolerância a Medicamentos/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Anidulafungina , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Caspofungina , Quitinases/deficiência , Quitinases/genética , Mapeamento Cromossômico , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Humanos , Testes de Sensibilidade Microbiana , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
7.
Med Mycol ; 53(2): 119-31, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25526780

RESUMO

Penicillium marneffei is a human pathogenic fungus and the only thermally dimorphic species of the genus. At 25°C, P. marneffei grows as a mycelium that produces conidia in chains. However, when incubated at 37°C or following infection of host tissue, the fungus develops as a fission yeast. Previously, a mutant (strain I133) defective in morphogenesis was generated via Agrobacterium-mediated transformation. Specifically, the rtt109 gene (subsequently designated rttA) in this mutant was interrupted by T-DNA insertion. We characterized strain I133 and the possible roles of the mutated rttA gene in altered P. marneffei phenotypes. At 25°C, the rttA mutant produces fewer conidia than the wild type and a complemented mutant strain, as well as slower rates of conidial germination; however, strain I133 continued to grow as a yeast in 37°C-incubated cultures. Furthermore, whereas the wild type exhibited increased expression of rttA at 37°C in response to the DNA-damaging agent methyl methane sulfonate, strain I133 was hypersensitive to this and other genotoxic agents. Under similar conditions, the rttA mutant exhibited decreased expression of genes associated with carbohydrate metabolism and oxidative stress. Importantly, when compared with the wild-type and the complemented strain, I133 was significantly less virulent in a Galleria infection model when the larvae were incubated at 37°C. Moreover, the mutant exhibited inappropriate phase transition in vivo. In conclusion, the rttA gene plays important roles in morphogenesis, carbohydrate metabolism, stress response, and pathogenesis in P. marneffei, suggesting that this gene may be a potential target for the development of antifungal compounds.


Assuntos
Genes Fúngicos , Penicillium/fisiologia , Estresse Fisiológico , Animais , Metabolismo dos Carboidratos , Técnicas de Inativação de Genes , Teste de Complementação Genética , Lepidópteros/microbiologia , Mutagênese Insercional , Penicillium/citologia , Penicillium/genética , Penicillium/patogenicidade , Temperatura , Virulência
8.
Microbiology (Reading) ; 160(Pt 9): 1929-1939, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25009235

RESUMO

Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei grows as a yeast that divides by binary fission. Previously, an Agrobacterium-mediated transformation system was used to randomly mutagenize P. marneffei, resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as yakA. In the current study, we demonstrate that the yakA mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the yakA gene resulted in early conidial germination and perturbation of cell wall integrity. The yakA mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the yakA mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, chsB and chsG. Moreover, the expression of yakA was induced during post-exponential-phase growth as well as by heat shock. Thus, yakA is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate chs expression and heat stress response in P. marneffei.


Assuntos
Estresse Fisiológico , Talaromyces/fisiologia , Talaromyces/efeitos da radiação , Transporte Biológico/efeitos da radiação , Quitina/metabolismo , Deleção de Genes , Teste de Complementação Genética , Esporos Fúngicos/crescimento & desenvolvimento , Talaromyces/citologia , Talaromyces/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...