Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976095

RESUMO

This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a control were applied to the root dentin surface of human molars (n = 6, total 48 samples). Samples were stored in a remineralizing solution (pH 7.0) for 7 or 28 days and then sectioned into two adjacent slices. One slice of each sample was immersed in 1M potassium hydroxide (KOH) solution for 24 h and rinsed with water for 5 min for the T-F analysis. The other slice did not undergo KOH treatment and was used to analyze the total fluoride content (W-F). The fluoride and calcium distributions were measured in all the slices using an in-air µPIXE/PIGE. Additionally, the amount of fluoride released from each material was measured. Clinpro XT varnish demonstrated the highest fluoride release among all the materials and tended to show high W-F and T-F and lower T-F/W-F ratios. Our study demonstrates that a high fluoride-releasing material shows high fluoride distribution into the tooth structure and low conversion from fluoride uptake by tooth-bound fluoride.

2.
J Phys Chem Lett ; 10(22): 6990-6995, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657220

RESUMO

Lead halide perovskite single layers with three grain sizes are subjected to proton-beam irradiation in order to assess the durability and radiation tolerance of perovskite solar cells (PSCs) against space radiation. Proton-beam irradiation is chosen because proton beams significantly affect solar cell performance in the space environment. We evaluate the effects of proton beams by focusing on the grain structure, crystal structure, and carrier lifetime of a perovskite single layer by using scanning electron microscopy, X-ray diffraction, photoluminescence (PL) spectra, and time-resolved PL (TRPL). The results show that proton irradiation does not significantly affect the grain structure and crystal structure of perovskite layer; the TRPL results show that the carrier lifetime inside the grain is constant up to a fluence of 1 × 1014 p+/cm2 and decreases significantly at a fluence of 1 × 1015 p+/cm2. Proton-beam radiation tolerance of the grain inside the perovskite layer is dominant in the radiation tolerance of PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...