Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(35): e202400706, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38647089

RESUMO

Circular dichroism (CD) studies on poly(1,4-phenylene)s bearing a chiral side chain in the aggregated conditions were carried out. Little CD was observed in a solution form, while addition of a poor solvent into the polyphenylene solution induced aggregation and a strong CD was observed, accordingly. Applying the controlled degree of polymerization (DP) of poly(1,4-phenylene) in the use of bidentate diphosphine Chiraphos as a ligand for the nickel catalyst, the relationship of DP with CD strength was studied to reveal to show the highest CD at the DP=84 (gabs=ca. 2×10-2). It was also found that the related aggregation was observed in good solvent 1,2-dichloroethane upon standing the solution at 4 °C for 3-23 days to observe gabs=ca. 10-1. Studies on the substituent effect of poly(1,4-phenylene) suggested that CD behaviors were dependent on the type of non-chiral substituent on the aromatic ring as well as the side-chain chirality.

2.
J Am Chem Soc ; 145(45): 24862-24876, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37930639

RESUMO

Controlling the one-handed helicity in synthetic polymers is crucial for developing helical polymer-based advanced chiral materials. We now report that an extremely small amount of chiral biphenylylacetylene (BPA) monomers (ca. 0.3-0.5 mol %) allows complete control of the one-handed helicity throughout the polymer chains mostly composed of achiral BPAs. Chiral substituents introduced at the 2-position of the biphenyl units of BPA positioned in the vicinity of the polymer backbones contribute to a significant amplification of the helical bias, as interpreted by theoretical modeling and simulation. The helical structures, such as the helical pitch and absolute helical handedness (right- or left-handed helix) of the one-handed helical copolymers, were unambiguously determined by high-resolution atomic force microscopy combined with X-ray diffraction. The exceptionally strong helix-biasing power of the chiral BPA provides a highly durable and practically useful chiral material for the separation of enantiomers in chromatography by copolymerization of an achiral functional BPA with a small amount of the chiral BPA (0.5 mol %) due to the robust helical scaffold of the one-handed helical copolymer.

3.
Chem Commun (Camb) ; 59(76): 11417-11420, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37671408

RESUMO

We report covalently patterned graphene with acetic acid as a new potential candidate for graphene-enhanced Raman scattering (GERS). Rhodamine 6G molecules in direct contact with the covalently modified region show an enormous enhancement (∼25 times) compared to the pristine region at 532 nm excitation. The GERS enhancement with respect to the layer thickness of the probed molecule, excitation wavelength, and covalently attached groups is discussed.

4.
Angew Chem Int Ed Engl ; 62(31): e202306252, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259975

RESUMO

A series of poly(biarylylacetylene)s (PBAs) bearing axially-chiral (S)-and (R)-pyridyl-N-oxide residues with a methoxy, propoxy, or acetyloxy substituent at the 3-position of the biaryl units was synthesized. All the PBAs formed a preferred-handed helix, while the helical sense preference was varied depending on the substituents despite the same twist-sense of the biaryl units. Among them, the propoxy-bound helical PBA showed an exceptionally high chiral recognition ability as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) and efficiently resolved not only various chiral aromatic alcohols, but also a variety of chiral aliphatic alcohols; the latter still remains difficult to resolve by commercially-available CSPs in HPLC. Such practically-useful both handed helical PBA-based CSPs can be produced from the racemic PBA composed of fully racemic monomer units through deracemization of the biaryl units with a chiral alcohol.

5.
Nanoscale ; 15(10): 4932-4939, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36786025

RESUMO

We report an efficient photo-induced covalent modification (PICM) of graphene by short-chain fatty acids (SCFAs) with an alkyl chain at the liquid-solid interface for spatially resolved chemical functionalization of graphene. Light irradiation on monolayer graphene under an aqueous solution of the SCFAs with an alkyl chain efficiently introduces sp3-hybridized defects, where the reaction rates of PICM are significantly higher than those in pure water. Raman and IR spectroscopy revealed that a high density of methyl, methoxy, and acetate groups is covalently attached to the graphene surface while it was partially oxidized by other oxygen-containing functional groups, such as OH and COOH. A greater downshift of the G-band in Raman spectra was observed upon the PICM with longer alkyl chains, suggesting that the charge doping effect can be controlled by the alkyl chain length of the SCFAs. The systematic research and exploration of covalent modification in SCFAs provide new insight and a potentially facile method for bandgap engineering of graphene.

6.
J Colloid Interface Sci ; 627: 578-586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35878457

RESUMO

HYPOTHESIS: Mixtures of chiral and achiral building blocks of supramolecules exhibit interesting cooperative phenomena, indicated by the nonlinear composition dependence of the chiral properties. However, the nonlinear composition dependence of the enantioselectivity of mixed micelles is not well understood. It was hypothesized that in-depth understanding can be achieved by carefully investigating the composition dependence of the properties. EXPERIMENTS: In this work, the nonlinear composition dependence of the enantioselectivity was found for the mixed micelle of achiral and chiralN-acyl amino acids by micellar electrokinetic chromatography (MEKC). Capillary electrophoresis, circular dichroism (CD) spectroscopy, surface tension measurement, and fluorescence spectroscopy were used to investigate the mechanisms. FINDINGS: Four mechanisms that could be causing the nonlinearity were investigated: (i) synergistic and antagonistic interactions of the surfactants; (ii) the chiral transfer from chiral to achiral surfactant; (iii) differences in the retention factor; and (iv) cooperative chiral recognition of the chiral and achiral surfactant. The investigation of the composition dependency of critical micelle concentration (CMC) and molar circular dichroism revealed that the effect of (i) and (ii) was negligibly small. The newly derived equations for (iii) and (iv) revealed that (iii) and (iv) have a major or medium effect on the nonlinear enantioselectivity.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Micelas , Aminoácidos , Cromatografia Capilar Eletrocinética Micelar/métodos , Estereoisomerismo , Tensoativos/química
7.
J Am Chem Soc ; 144(6): 2775-2792, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119857

RESUMO

We report unique coordination-driven supramolecular helical assemblies of a series of dirhodium(II) tetracarboxylate paddlewheels bearing chiral phenyl- or methyl-substituted amide-bound m-terphenyl residues with triethylene glycol monomethyl ether (TEG) or n-dodecyl tails through a 1:1 complexation with 1,4-diazabicyclo[2.2.2]octane (DABCO). The chiral dirhodium complexes with DABCO in CHCl3/n-hexane (1:1) form one-handed helical coordination polymers with a controlled propeller chirality at the m-terphenyl groups, which are stabilized by intermolecular hydrogen-bonding networks between the adjacent amide groups at the periphery mainly via a cooperative nucleation-elongation mechanism as supported by circular dichroism (CD), vibrational CD, and variable-temperature (VT) absorption and CD analyses. The VT visible-absorption titrations revealed the temperature-dependent changes in the degree of polymerization. The columnar supramolecular helical structures were elucidated by X-ray diffraction and atomic force microscopy. The helix sense of the homopolymer carrying the bulky phenyl and n-dodecyl substituents is opposite those of other chiral homopolymers despite having the same absolute configuration at the pendants. A remarkably strong "sergeants and soldiers" (S&S) effect was observed in most of the chiral/achiral copolymers, while the copolymers of the bulky chiral phenyl-substituted dirhodium complexes with n-dodecyl chains displayed an "abnormal" S&S effect accompanied by an inversion of the helix sense, which could be switched to a "normal" S&S effect by changing the solvent composition. A nonracemic dirhodium complex of 20% enantiomeric excess bearing the less bulky chiral methyl substituents with n-dodecyl chains assembled with DABCO to form an almost one-handed helix (the "majority rule" (MR) effect), whereas the three other nonracemic copolymers showed a weak MR effect.

8.
J Am Chem Soc ; 143(32): 12725-12735, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34347469

RESUMO

Any polymers composed of racemic repeating units are obviously optically inactive and hence chiral functions, such as asymmetric catalysis, will not be expected at all. Contrary to such a preconceived notion, we report an unprecedented helical polymer-based highly enantioselective organocatalyst prepared by polymerization of a racemic monomer with no catalytic activity. Both the right- and left-handed helical poly(biarylylacetylene)s (PBAs) composed of dynamically racemic 2-arylpyridyl-N-oxide monomer units with N-oxide moieties located in the vicinity of the helical polymer backbone can be produced by noncovalent interaction with a chiral alcohol through deracemization of the biaryl pendants. The macromolecular helicity and the axial chirality induced in the PBAs are retained ("memorized") after complete removal of the chiral alcohol. Accordingly, the helical PBAs with dual static memory of the helicity and axial chirality show remarkable enantioselectivity (86% ee) for the asymmetric allylation of benzaldehyde. The enantioselectivity is slightly lower than that (96% ee) of the homochiral PBAs prepared from the corresponding enantiopure (R)- and (S)-monomers, but is comparable to that (88% ee) of the helical PBA composed of nonracemic monomers of ca. 60% ee.

9.
Chem Asian J ; 16(7): 769-774, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449407

RESUMO

A series of multiple helicenes was simultaneously synthesized in one step by intramolecular cyclization of a single chrysene derivative containing two 2-[(4-alkoxyphenyl)ethynyl]phenyl units accompanied by rearrangements of the aryl pendants. The electrophile-induced double cyclization with or without aryl migrations proceeded efficiently under acidic conditions to afford annulative π-extension of the chrysene units and produced quadruple (QH-2), triple (TH-2), and double (DH-2) helicenes containing [4]- and/or [5]helicene frameworks with dynamic and/or static helicene chirality in one step. Three multiple helicenes' structures were determined by X-ray crystallography and/or density functional theory calculations. The multiple TH-2 and DH-2 helicenes were separated into enantiomers because of the stable one and two [5]helicene moieties, respectively, and showed intense circular dichroism and circularly polarized luminescence. Although QH-2, which comprises four [4]helicene subunits, was not resolved into enantiomers, the TH-2 enantiomers were further separated into a pair of diastereomers at low temperature resulting from their substituted [4]helicene chirality.

10.
Sci Rep ; 11(1): 790, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437010

RESUMO

The elastic responsiveness of single cellulose nanofibres is important for advanced analysis of biological tissues and their use in sophisticated functional materials. However, the mechanical responsiveness derived from the twisted structure of cellulose nanofibres (CNFs) has remained unexplored. In this study, finite element simulations were applied to characterize the deformation response derived from the torsional structure by performing tensile and bending tests of an unconventionally very long and twisted rod model, having the known dimensional parameters and properties of CNFs. The antagonistic action of two types of structural elements (a contour twist and a curvilinear coordinate) was found to result in an irregular deformation response but with only small fluctuations. The contour twist generated rotational displacements under tensile load, but the curvilinear coordinate suppressed rotational displacement. Under bending stress, the contour twist minimized irregular bending deformation because of the orthotropic properties and made the bending stress transferability a highly linear response.

11.
Anal Chem ; 90(18): 11048-11053, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30113825

RESUMO

Capillary electrophoresis is a method for analyzing intermolecular interactions that does not require immobilization of molecules to a solid surface or introduction of a luminescent moiety. Recently, an advanced method, moment analysis based on affinity capillary electrophoresis (MA-ACE), was developed. This method can determine not only the equilibrium constant but also the rate constants of an intermolecular interaction. Through MA-ACE, it became possible to theoretically predict an increase in the variance of an observed peak caused by intermolecular interaction. In this study, we confirm the prediction and determine the kinetic constants by using MA-ACE to analyze an intermolecular interaction between cyclodextrin and phenoxypropionic acid. A numerical calculation is performed to confirm that the derived rate constants by MA-ACE are appropriate.

12.
J Nutr Sci Vitaminol (Tokyo) ; 64(2): 129-137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710030

RESUMO

CONTEXT: International interest in the Japanese diet has grown in recent years. OBJECTIVE: The aim of this systematic review was to evaluate and organize the Japanese diet and dietary characteristics from an epidemiological perspective, mainly focusing on the nutritional and dietary elements. DATA SOURCES: PubMed, Web of Science, Japan Medical Abstracts Society, JDream III, and CiNii databases were searched. STUDY SELECTION: The eligibility criteria included research with an epidemiological study design that was either cross-sectional, cohort, or case-control-based that defined the dietary patterns of the Japanese diet using dietary pattern analysis. A total of 39 research articles that described the Japanese diet were included. DATA EXTRACTION: The data that were extracted included the following: implementing country, location, study design, participant characteristics, key outcomes, methods used in the analysis of dietary patterns, and descriptions of the Japanese diet. DATA SYNTHESIS: As a result of the systematic review analyzing the descriptions of the Japanese diet from 39 selected articles, we were able to aggregate the descriptions into 16 categories from 33 factors. After performing a content analysis using a further aggregation of categories, we found that the top three applicable categories were soybeans/soybean-derived products, seafood, and vegetables; these were followed by rice and miso soup. CONCLUSION: The Japanese dietary content was found to be diverse based on an examination of epidemiological studies; however, we were able to aggregate the content into 16 categories. The Japanese diet is considered to be a dietary pattern that contains a combination of factors: the dietary staple, side dishes, and soup.


Assuntos
Dieta , Comportamento Alimentar , Humanos , Japão , Alimentos Marinhos , Alimentos de Soja , Verduras
13.
Anal Sci ; 34(2): 215-220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434109

RESUMO

Moment equations were developed for quantitatively studying the separation characteristics of micellar electrokinetic chromatography (MEKC). They explain how the first absolute and second central moments of elution peaks are correlated with some fundamental parameters of the partition equilibrium and mass transfer kinetics in MEKC systems. In order to discuss the influence of the mass transfer kinetics on peak broadening, the moment equations were used to analyze the separation behavior in MEKC systems. Separation conditions were chosen on the basis of practical MEKC experiments previously conducted. It was quantitatively clarified that both the solute permeation at the interfacial boundary of surfactant micelles and axial diffusion of solute molecules in a capillary had a predominant contribution to the spreading of the elution peaks in MEKC systems. This is a preliminary study for the analytical determination of rate constants concerning solute permeation at the interface of surfactant micelles from elution peak profiles measured by MEKC. In addition, it was also indicated that the experimental conditions of MEKC systems could be controlled so that the interfacial solute permeation would have a predominant role for the band broadening. For example, the contribution of the interfacial permeation was about 33 times larger than that of the axial diffusion of solute molecules under the MEKC conditions in a previous study. This means that the rate constants could appropriately be determined for the interfacial solute permeation.

14.
Biomacromolecules ; 19(2): 449-459, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29220164

RESUMO

We investigated whether helicity and/or chirality of cellulose tris(phenylcarbamate) (CTPC) can transfer to noncharged, nonhelical oligo- and polyfluorenes when CTPC was employed as a solution processable homochiral platform of a D-glucose-skeletal polymer. Noticeably, CTPC revealed the solvent-driven, ambidextrous intermolecular helicity/chirality transfer capability to these fluorenes. The chiroptical inversion characteristics of circularly polarized luminescence (CPL) and the corresponding CD spectra were realized by solely choosing a proper achiral solvent and/or achiral cosolvent. When the solution of PF6 and CTPC in tetrahydrofuran (THF) was cast on a quartz substrate, the dissymmetry ratio of CPL (gCPL) from the polymer film showed gCPL = +2.1 × 10-3 at 429 nm. Conversely, when dichloromethane (DCM) was used as the solvent, the CPL sign was inverted to gCPL = -2.4 × 10-3 at 429 nm. The dissymmetry ratio of Cotton CD band (gCD) from the THF solution was gCD = +3.2 × 10-3 at 392 nm; conversely, from the DCM, the CD sign inverted to gCD = -0.8 × 10-3 at 371 nm. The sign and magnitude of the gCD values were interpreted to a London dispersion term (δd) of Hansen solubility parameter (δ) of the casting solvents rather than a dipole-dipole interaction term (δp) and a hydrogen bonding interaction term (δh) of the δ values and dielectric constant (ε). Analysis of solvent-driven changes in FTIR spectra, wide-angle X-ray diffraction profiles, and differential scanning calorimetry diagrams indicated that solvent driven on-off switching of multiple hydrogen bonds due to three urethane groups of CTPC play the key for the inversion. Intermolecular CH/π and π-π interactions among phenyl rings and alkyl groups were assumed to be crucial for helicity/chirality transfer capability based on molecular mechanics and molecular dynamics simulations of PF6-CTPC hybrids. These chiroptical inversion characteristics arose from solvent-driven order-disorder transition characteristics of the CTPC helix rather than a helix-helix transition of CTPC itself.


Assuntos
Celulose/química , Fluorenos/química , Luminescência , Fenilcarbamatos/química , Dicroísmo Circular , Isomerismo
15.
Anal Sci ; 33(10): 1147-1154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993589

RESUMO

New moment equations were developed for size exclusion capillary electrochromatography (SECEC), in which intermolecular chemical reactions simultaneously took place. They explain how the first absolute and second central moments of elution peaks are correlated with some fundamental equilibrium and kinetic parameters of mass transfer and chemical reaction in SECEC column. In order to demonstrate the effectiveness of the moment equations, they were used to predict chromatographic behavior under hypothetical SECEC conditions. It was quantitatively studied how the association and dissociation rate constants of intermolecular interaction affected the position and spreading of elution peaks. It was indicated that both the intermolecular reaction kinetics and axial dispersion of solute molecules in a capillary column had a predominant contribution to the band broadening.

16.
Anal Chem ; 89(19): 10487-10495, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28799747

RESUMO

Affinity capillary electrophoresis (ACE) has been widely applied to evaluate binding constants of various systems. Recently, moment equations were derived based on the moment analysis (MA) theory for describing the influence of reaction kinetics and longitudinal diffusion on the elution peak profiles measured by ACE (MA-ACE). The equations enable one to obtain not only the binding constants but also the reaction rate constants from the migration time and variance of elution peaks. However, it is necessary to consider other factors (e.g., sample injection, detector window, Joule heating, and ramp time of the voltage increase) to improve the accuracy of MA-ACE. The variance of these effects was quantified under typical experimental conditions. Such quantification clarified the process to obtain the rate constants. The best experimental conditions to achieve high accuracy were discussed.

17.
ACS Nano ; 10(2): 1744-55, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26743467

RESUMO

Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.


Assuntos
Grafite/química , Pontos Quânticos/química , Pontos Quânticos/ultraestrutura , Dicroísmo Circular , Células Hep G2 , Humanos , Estereoisomerismo
18.
Chem Commun (Camb) ; 51(39): 8237-40, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25820177

RESUMO

2,2-Dimethyl-1,3-dioxolane connected to two pyrene moieties through flexible wires in chloroform exhibited cryptochirality in the ground state, as proven by the lack of detectable circular dichroism signals. This cryptochirality was deciphered in the photoexcited state by circularly polarised luminescence signals.

19.
Org Biomol Chem ; 12(25): 4342-6, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24789695

RESUMO

Circularly polarised luminescence (CPL) and photoluminescence (PL) properties of π-conjugated (R)- and (S)-2,2'-diphenyl-4-biphenanthrol (VAPOL) exhibited an efficient CPL (∼1.3 × 10(-3)) with a quantum yield (ΦF) of 0.20 at 376 nm. By comparison, (R)- and (S)-3,3-diphenyl-2,2-bi-1-naphthol (VANOL) exhibited no CPL or PL.

20.
Chem Asian J ; 9(1): 218-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24151104

RESUMO

A circularly polarized luminescence (CPL) material has been created by polymer-polymer complexation between a helix-forming polysaccharide, schizophyllan (SPG), and a meta-phenylene-linked polyfluorene derivative (mPFS). Computational modeling revealed that mPFS can adopt a helical structure although a conventional polyfluorene derivative with a para-phenylene linkage tends to enjoy a rigid rodlike conformation. Our detailed experimental examination showed that mPFS forms a chiral nanowire complex through cohelix formation with SPG. We have found, as expected, that this cohelical complex emits highly efficient CPL even in an aqueous solution. The appearance of the high CPL property is due to 1) a high quantum yield of the fluorene unit and 2) immobilization of the helically twisted conformation of mPFS in an isolated manner through cohelix formation with SPG. One can propose, therefore, that the SPG/mPFS complex acts as a new high-performance CPL material with a solvent-dispersible nanowire structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...