Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(3): pgae047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444600

RESUMO

The architecture of species interaction networks is a key factor determining the stability of ecological communities. However, the fact that ecological network architecture can change through time is often overlooked in discussions on community-level processes, despite its theoretical importance. By compiling a time-series community dataset involving 50 spider species and 974 Hexapoda prey species/strains, we quantified the extent to which the architecture of predator-prey interaction networks could shift across time points. We then developed a framework for finding species that could increase the flexibility of the interaction network architecture. Those "network coordinator" species are expected to promote the persistence of species-rich ecological communities by buffering perturbations in communities. Although spiders are often considered as generalist predators, their contributions to network flexibility vary greatly among species. We also found that detritivorous prey species can be cores of interaction rewiring, dynamically interlinking below-ground and above-ground community dynamics. We further found that the predator-prey interactions between those network coordinators differed from those highlighted in the standard network-analytical framework assuming static topology. Analyses of network coordinators will add a new dimension to our understanding of species coexistence mechanisms and provide platforms for systematically prioritizing species in terms of their potential contributions in ecosystem conservation and restoration.

2.
Nat Ecol Evol ; 7(9): 1432-1443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460838

RESUMO

In nature, entangled webs of predator-prey interactions constitute the backbones of ecosystems. Uncovering the network architecture of such trophic interactions has been recognized as the essential step for exploring species with great impacts on ecosystem-level phenomena and functions. However, it has remained a major challenge to reveal how species-rich networks of predator-prey interactions are continually reshaped through time in the wild. Here, we show that dynamics of species-rich predator-prey interactions can be characterized by remarkable network structural changes and alternations of species with greatest impacts on community processes. On the basis of high-throughput detection of prey DNA from 1,556 spider individuals collected in a grassland ecosystem, we reconstructed dynamics of interaction networks involving, in total, 50 spider species and 974 prey species and strains through 8 months. The networks were compartmentalized into modules (groups) of closely interacting predators and prey in each month. Those modules differed in detritus/grazing food chain properties, forming complex fission-fusion dynamics of belowground and aboveground energy channels across the seasons. The substantial shifts of network structure entailed alternations of spider species located at the core positions within the entangled webs of interactions. These results indicate that knowledge of dynamically shifting food webs is crucial for understanding temporally varying roles of 'core species' in ecosystem processes.


Assuntos
Ecossistema , Aranhas , Animais , Estações do Ano , Comportamento Predatório , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...