Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 123(11): 1633-1643, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32921792

RESUMO

BACKGROUND: Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood-brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse. METHODS: (1) A dual-tumour model was generated by inoculating luciferase-expressing melanoma B16 cell line, B16-Luc, into the brain and under the skin of syngeneic C57BL/6 mice. IF7C(RR)-SN38 was injected intravenously daily at 7.0 µmoles/kg and growth of tumours was assessed by chemiluminescence using an IVIS imager. A similar dual-tumour model was generated with the C6-Luc line in immunocompromised SCID mice. (2) IF7C(RR)-SN38 formulated with 10% Solutol HS15 was injected intravenously daily at 2.5 µmoles/kg into two brain tumour mouse models: B16-Luc cells in C57BL/6 mice, and C6-Luc cells in nude mice. RESULTS: (1) Daily IF7C(RR)-SN38 injection suppressed tumour growth regardless of cell lines or mouse strains. (2) Daily injection of Solutol-formulated IF7C(RR)-SN38 led into complete disappearance of B16-Luc brain tumour in C57BL/6 mice, whereas this did not occur in C6-Luc in nude mice. CONCLUSIONS: IF7C(RR)-SN38 crosses the blood-brain barrier and suppresses growth of brain tumours in mouse models. Solutol HS15-formulated IF7C(RR)-SN38 may have promoted an antitumour immune response.


Assuntos
Anexina A1/metabolismo , Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas , Portadores de Fármacos/farmacologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Peptídeos , Ratos
2.
J Biol Chem ; 288(7): 5007-16, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23269668

RESUMO

Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10(-/-) mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10(-/-) females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10(-/-) females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.


Assuntos
Esteroides/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Animais , Estrogênios/sangue , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Ácido Glucurônico/química , Glicolipídeos/metabolismo , Células HEK293 , Humanos , Células Matadoras Naturais/citologia , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Neurônios/metabolismo , Recombinação Genética , Testosterona/sangue
3.
J Biol Chem ; 286(37): 32824-33, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784847

RESUMO

Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with ß1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-ß1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containing HNK-1 glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from ß1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.


Assuntos
Antígenos de Neoplasias/metabolismo , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glucanos/metabolismo , Animais , Anticorpos/farmacologia , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...