Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(5): 1770-1773, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28121146

RESUMO

Single-component molecular conductors can provide a variety of electronic states. We demonstrate here that the Dirac electron system emerges in a single-component molecular conductor under high pressure. First-principles density functional theory calculations revealed that Dirac cones are formed in the single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate), which shows temperature-independent resistivity (zero-gap behavior) at 12.6 GPa. The Dirac cone formation in [Pd(dddt)2] can be understood by a tight-binding model. The Dirac points originate from the HOMO and LUMO bands, each of which is associated with different molecular layers. Overlap of these two bands provides a closed intersection at the Fermi level (Fermi line) if there is no HOMO-LUMO coupling. Two-step HOMO-LUMO couplings remove the degeneracy on the Fermi line, resulting in gap formation. The Dirac cones emerge at the points where the Fermi line intersects with a line on which the HOMO-LUMO coupling is zero.

2.
J Chem Phys ; 136(4): 044519, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22299903

RESUMO

From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I(3) and the single-component molecular conductor [Au(tmdt)(2)]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.

3.
J Chem Phys ; 132(21): 214705, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20528039

RESUMO

Starting from the structure of the (TTM-TTP)I(3) molecular-based material, we examine the characteristics of frontier molecular orbitals using ab initio (CASSCF/CASPT2) configurations interaction calculations. It is shown that the singly occupied and second-highest-occupied molecular orbitals are close to each other, i.e., this compound should be regarded as a two-orbital system. By dividing virtually the [TTM-TTP] molecule into three fragments, an effective model is constructed to rationalize the origin of this picture. In order to investigate the low-temperature, symmetry breaking experimentally observed in the crystal, the electronic distribution in a pair of [TTM-TTP] molecules is analyzed from CASPT2 calculations. Our inspection supports and explains the speculated intramolecular charge ordering which is likely to give rise to low-energy magnetic properties.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Iodo/química , Teoria Quântica , Sulfetos/química , Magnetismo , Estrutura Molecular , Temperatura
4.
Sci Technol Adv Mater ; 10(2): 024309, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877282

RESUMO

The quasi-two-dimensional molecular conductor α-(BEDT-TTF)2I3 exhibits anomalous transport phenomena where the temperature dependence of resistivity is weak but the ratio of the Hall coefficient at 10 K to that at room temperature is of the order of 104. These puzzling phenomena were solved by predicting massless Dirac fermions, whose motions are described using the tilted Weyl equation with anisotropic velocity. α-(BEDT-TTF)2I3 is a unique material among several materials with Dirac fermions, i.e. graphene, bismuth, and quantum wells such as HgTe, from the view-points of both the structure and electronic states described as follows. α-(BEDT-TTF)2I3 has the layered structure with highly two-dimensional massless Dirac fermions. The anisotropic velocity and incommensurate momenta of the contact points, ±k0, originate from the inequivalency of the BEDT-TTF sites in the unit cell, where ±k0 moves in the first Brillouin zone with increasing pressure. The massless Dirac fermions exist in the presence of the charge disproportionation and are robust against the increase in pressure. The electron densities on those inequivalent BEDT-TTF sites exhibit anomalous momentum distributions, reflecting the angular dependences of the wave functions around the contact points. Those unique electronic properties affect the spatial oscillations of the electron densities in the vicinity of an impurity. A marked behavior of the Hall coefficient, where the sign of the Hall coefficient reverses sharply but continuously at low temperatures around 5 K, is investigated by treating the interband effects of the magnetic field exactly. It is shown that such behavior is possible by assuming the existence of the extremely small amount of electron doping. The enhancement of the orbital diamagnetism is also expected. The results of the present research shed light on a new aspect of Dirac fermion physics, i.e. the emergence of unique electronic properties owing to the structure of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...