Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 11(6): 1010-1025, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928306

RESUMO

Genetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco-genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%-10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%-50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication-admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication-driven introgression among native populations.

2.
Integr Zool ; 11(2): 162-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748687

RESUMO

The ballan wrasse (Labrus bergylta) is a marine fish belonging to the family Labridae characterized by 2 main morphotypes that occur in sympatry: spotty and plain. Previous studies have revealed differences in their life-history traits, such as growth and maturation; however, the genetic relationship between forms is presently unknown. Using 20 recently developed microsatellite markers, we conducted a genetic analysis of 41 and 48 spotty and plain ballan wrasse collected in Galicia (northwest Spain). The 2 morphotypes displayed highly significant genetic differences to each other (FST = 0.018, P < 0.0001). A similar degree of genetic differentiation (FST = 0.025, P < 0.0001) was shown using the STRUCTURE clustering approach with no priors at K = 2. In this case, the frequency of spotty and plain morphotypes was significantly different (χ(2) = 9.46, P = 0.002). It is concluded that there is significant genetic heterogeneity within this species, which appears to be highly associated with the spotty and plain forms, but not completely explained by them. Given the previously demonstrated biological differences between morphotypes, and the present genetic analyses, we speculate about the convenience of a taxonomic re-evaluation of this species.


Assuntos
Perciformes/classificação , Perciformes/genética , Animais , DNA Mitocondrial/genética , Repetições de Microssatélites , Perciformes/anatomia & histologia , Análise de Sequência de DNA , Espanha , Simpatria
3.
PLoS One ; 10(9): e0138444, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383256

RESUMO

Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.


Assuntos
Fluxo Gênico , Genótipo , Salmo salar/genética , Distribuição Animal , Animais , Genética Populacional , Estágios do Ciclo de Vida , Modelos Teóricos , Noruega , Dinâmica Populacional , Rios
4.
Dis Aquat Organ ; 71(3): 239-54, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17058605

RESUMO

This review summarises the state of knowledge of both viral and bacterial diseases of Atlantic cod Gadus morhua, and their diagnosis, prophylaxis and treatment. The most important losses have been at the larval and juvenile stages, and vibriosis has long been the most important bacterial disease in cod, with Listonella (Vibrio) anguillarum dominant among pathogenic isolates. Vaccination of cod against pathogens such as L. anguillarum and Aeromonas salmonicida clearly demonstrates that the cod immune system possesses an effective memory and appropriate mechanisms sufficient for protection, at least against some diseases. Well-known viruses such as the nodavirus that causes viral encephalopathy and retinopathy (VER), infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV) have been isolated from Atlantic cod and can be a potential problem under intensive rearing conditions. No commercial vaccines against nodavirus are currently available, whereas vaccines against IPNV infections based upon inactivated virus as well as IPNV recombinant antigens are available. A number of investigations of the pharmacokinetic properties of antibacterial agents in cod and their efficacy in treating bacterial infections have been reviewed.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Peixes/prevenção & controle , Gadus morhua , Viroses/veterinária , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/normas , Formação de Anticorpos/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Probióticos , Vacinação/veterinária , Viroses/tratamento farmacológico , Viroses/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...