Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Science ; 257(5066): 63-5, 1992 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17800711

RESUMO

An electron donor-acceptor-donor molecule consisting of two porphyrin donors rigidly attached to the two-electron acceptor N,N'-diphenyl-3,4,9,10-perylenebis(dicarboximide) acts as a light intensity-dependent molecular switch on a picosecond time scale. Excitation of the porphyrins within this molecule with subpicosecond laser pulses results in single or double reduction of the acceptor depending on the light intensity. The singly and doubly reduced electron acceptors absorb light strongly at 713 and 546 nanometers, respectively. Because these absorption changes are produced solely by electron transfers, this molecular switch effectively has no moving parts and switches significantly faster than photochromic molecules that must undergo changes in molecular structure.

3.
Proc Natl Acad Sci U S A ; 78(5): 2957-61, 1981 May.
Artigo em Inglês | MEDLINE | ID: mdl-16593015

RESUMO

The chlorophyll a (Chl a) special-pair model of the primary donor of photosystem I (P700) does not account in a completely adequate fashion for the magnetic resonance properties observed for P700(+). Moreover, P700 is at least 420 mV easier to oxidize than is Chl a in vitro. Neither Chl a dimer formation nor selective ligation of Chl a can account for this potential difference. Enolization of the Chl a ring V beta-keto ester results in a very different pi electronic structure. The Chl a enol can be trapped as a silyl enol ether. In addition, the enol analog 9-desoxo-9,10-dehydro-Chl a can be prepared. Both the trapped enol and its 9-H analog are approximately 350 mV easier to oxidize than Chl a. The ESR spectrum of the cation radical consists of a single 6.1-G gaussian line that is line narrowed relative to that of Chl a(+) in a manner similar to P700(+). Electron-nuclear double resonance (ENDOR) spectroscopy resolves only a 3.5-MHz hyperfine splitting for the 3-methyl-group. The remaining splittings are all less than 3.5 MHz. The second moment of the ESR line of fully (13)C-enriched 9-desoxo-9,10-dehydro-Chl a(+) agrees with that of [(13)C]P700(+) to within 10%. Application of the special-pair model to the [(13)C]P700(+) second-moment data yields a 100% error. Ab initio molecular orbital calculations on ethyl chlorophyllide a enol cation bear out the ESR and ENDOR data. We conclude that a monomeric Chl a enol model provides a better description of the magnetic resonance parameters and oxidation potential of P700 than a Chl a special-pair model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...