Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511158

RESUMO

Cold stress is among the most important environmental factors reducing the yield of crops. The present study aimed to investigate the impact of increasing cold stress conditions on winter oilseed rape polyamines, proline, and ethylene metabolism in acclimated and non-acclimated winter oilseed rape. This study was carried out under controlled conditions in the laboratory. The winter oilseed rape hybrid 'Visby' was used in the experiment. Acclimated and non-acclimated plants were subjected to a two-day-long increasing cold (from -1 °C to -3 °C) treatment. HPTLC, RT-qPCR, spectral analysis, and gas chromatography methods were used to analyse the levels of polyamines, gene expression, proline, and ethylene, respectively. This study showed a decrease in putrescine, spermidine, and spermine content during cold acclimation and a decrease in putrescine and spermidine levels at sub-zero temperatures. There were intensive changes in ADC2 gene expression, proline, and ethylene levels in non-acclimated plants: a substantial increase after exposure to -1 °C temperature and a sharp decrease after exposure to -3 °C temperature. The changes in these parameters were lower or absent in acclimated plants. The phenomena observed in this study add new insights to the knowledge about the plant stress response and suggest questions to be answered in the future.


Assuntos
Brassica napus , Poliaminas , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Prolina/metabolismo , Temperatura Baixa , Brassica napus/genética
2.
Plants (Basel) ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514331

RESUMO

This study was carried out to evaluate the effect of exogenous proline on the growth, biochemical responses, and plant recovery of drought-stressed oilseed rape plants after renewed irrigation. The experiment was conducted under controlled laboratory conditions. After 21 days of cultivation, 3-4 leaf stage seedlings were sprayed with proline (1 mM), then subjected to prolonged drought stress for 8 days to achieve a severe water deficit, next, irrigation was resumed and recovery was assessed after 4 days. The results show that exogenous application of proline reduced the drought-induced growth inhibition of seedlings while maintaining relative water content (RWC) and growth parameters closer to those of irrigated plants. Proline had a positive effect on chlorophyll accumulation and membrane permeability while decreasing ethylene, H2O2, and MDA levels. Moreover, after 4 days of recovery, the H2O2 content of the proline-treated plants was significantly lower (2-fold) and the MDA content was close to that of continuously irrigated plants. Thus, all these biochemical reactions influenced plant survival: after drought + proline treatment, the number of surviving plants was two times higher than that of drought-treated plants. The findings show that exogenous proline has antioxidant, osmotic, and growth-promoting properties that improve the drought tolerance of winter oilseed rape plants and is, therefore, beneficial for drought adaptation in oilseed rape.

3.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986989

RESUMO

In order to increase plants tolerance to drought, the idea of treating them with stress-protecting compounds exogenously is being considered. In this study, we aimed to evaluate and compare the impact of exogenous calcium, proline, and plant probiotics on the response of winter wheat to drought stress. The research was carried out under controlled conditions, simulating a prolonged drought from 6 to 18 days. Seedlings were treated with ProbioHumus 2 µL g-1 for seed priming, 1 mL 100 mL-1 for seedling spraying, and proline 1 mM according to the scheme. 70 g m-2 CaCO3 was added to the soil. All tested compounds improved the prolonged drought tolerance of winter wheat. ProbioHumus, ProbioHumus + Ca had the greatest effect on maintaining the relative leaf water content (RWC) and in maintaining growth parameters close to those of irrigated plants. They delayed and reduced the stimulation of ethylene emission in drought-stressed leaves. Seedlings treated with ProbioHumus and ProbioHumus + Ca had a significantly lower degree of membrane damage induced by ROS. Molecular studies of drought-responsive genes revealed substantially lower expression of Ca and Probiotics + Ca treated plants vs. drought control. The results of this study showed that the use of probiotics in combination with Ca can activate defense reactions that can compensate for the adverse effects of drought stress.

4.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297824

RESUMO

This study evaluates the effect of end-of-day blue (EOD B) light on the physiological response of lettuce (Lactuca sativa, Lobjoits Green Cos) at different phenological development stages. Plants were grown in a controlled environment growth chamber (day/night temperature 21 ± 2 °C; relative air humidity 60 ± 5%) under the light of light-emitting diodes (LEDs) consisting of 5% blue (B; 450 nm), 85% red (R; 660 nm), and 10% green (G; 530 nm) photosynthetic photon flux density (PPFD) at 200 µmol m-2 s-1 for 16 h d-1 (BRG, control) for 8, 15, and 25 days (BBCH 12, BBCH 14, and BBCH 18, respectively). For the EOD B treatments, lettuce plants were additionally illuminated with 100% of B light at 30 and 60 µmol m-2 s-1 PPFD for 4 h d-1 (B30 and B60, respectively). The results show that EOD B light caused the elevated shoot elongation of lettuce plants regardless of their growth stages. However, leaf width increased only in more developed lettuce plants (BBCH 18). EOD B light negatively affected the development of new leaves and fresh weight, except for seedlings (BBCH 12). Most photosynthetic and spectral leaf indices also decreased when lettuce was treated with EOD B light, especially under the PPFD level of 60 µmol m-2 s-1. Moreover, the changes in metabolic parameters such as DPPH free radical activity, free proline content, and H+-ATPase activity in lettuce showed a plant response to unfavorable conditions to EOD B light.

5.
Plants (Basel) ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161295

RESUMO

Sosnowsky's hogweed (Heracleum sosnowskyi Manden.), an important invasive species in Eastern Europe, is a monocarpic perennial plant that propagates exclusively by seeds. Hence, interfering with seed viability could help control its spread. In the present study, we investigated the effect of exogenous GA3 (25, 100 and 150 mg/L) sprayed twice onto flowering H. sosnowskyi plants on the development of fruits (mericarps) and their ability to germinate under field conditions over the growing seasons of 2018 and 2019. Mericarps from plants sprayed with GA3 failed to develop normally. The width/length ratio of mericarps decreased by 23% to 25% after 150 mg/L GA3 application and their average weight decreased between 7% and 39% under all GA3 treatments. X-ray radiographs revealed that the internal structure was malformed, with many of the mericarps lacking well-developed seeds. Proportionally fewer well-developed mericarps were produced by GA3-treated plants than water-sprayed control plants in 2018. Seed germination assessed outdoors in seeds buried in the ground was also severely reduced (from 58% to 99% after 150 mg/L GA3 application). This indicates that exogenous GA3 sprays result in incomplete seed development and a consequent decrease in viability and germination. As the highest GA3 dose used resulted in significantly reduced propagation of Sosnowsky's hogweed through seeds in the field, GA3 provides a promising approach to the control of the spread of this invasive weed species.

6.
PeerJ ; 9: e10930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643716

RESUMO

Cells of characean algae are attractive for plant cell physiologists because of their large size and their close relation to higher plant cells. The objective of our study was to evaluate the purity of the compartments (cell wall, cytoplasm with plastids, mitochondria, nuclei and endomembrane system, and vacuole) separated mechanically from the internodal cells of Nitellopsis obtusa using enzymatic markers. These included α-mannosidase and malate dehydrogenase, vacuolar and cytoplasmic enzymes, respectively. The biomarkers applied revealed the degree of compartment contamination with the material from unwanted cell parts. The cell wall was contaminated slightly by vacuole and cytoplasm residuals, respectively by 12.3 and 1.96% of corresponding biomarker activities. Relatively high activity of vacuolar marker in the cell wall could be associated with the cell vacuoles in the multicellular structure of the nodes. The biomarkers confirmed highly purified vacuolar (99.5%) and cytoplasmic (86.7%) compartments. Purity estimation of the cell fractions enabled reevaluating nCuO related Cu concentrations in the compartments of charophyte cell. The internalisation of CuO nanoparticles in N. obtusa cell occurred already after 0.5h. In general, the approach seems to be useful for assessing the accumulation and distribution of various xenobiotics and/or metabolites within plant cell. All this justifies N.obtusa internodal cells as a model organism for modern studies in cell biology and nanotoxicology.

7.
Plants (Basel) ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024174

RESUMO

Cold stress is one of the most common abiotic stresses experienced by plants and is caused by low temperature extremes and variations. Polyamines (PAs) have been reported to contribute in abiotic stress defense processes in plants. The present study investigates the survival and responses of PA-treated non-acclimated (N) and acclimated (A) winter oilseed rape to increasing cold conditions. The study was conducted under controlled conditions. Seedlings were foliarly sprayed with spermidine (Spd), spermine (Spm), and putrescine (Put) solutions (1 mM) and exposed to four days of cold acclimation (4 °C) and two days of increasing cold (from -1 to -3 °C). Two cultivars with different cold tolerance were used in this study. The recorded traits included the percentage of survival, H+-ATPase activity, proline accumulation, and ethylene emission. Exogenous PA application improved cold resistance, maintained the activity of plasma membrane H+-ATPase, increased content of free proline, and delayed stimulation of ethylene emission under increasing cold. The results of the current study on winter oilseed rape revealed that foliar application of PAs may activate a defensive response (act as elicitor to trigger physiological processes), which may compensate the negative impact of cold stress. Thus, cold tolerance of winter oilseed rape can be enhanced by PA treatment.

8.
J Plant Physiol ; 165(8): 825-32, 2008 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-17920157

RESUMO

Changes in plasmalemma K(+)Mg(2+)-ATPase dephosphorylating activity and H(+) transport were examined in freezing-tolerant and non-tolerant genotypes of the perennial grass species Festuca pratensis Huds. Enzyme activity and DeltamuH(+) were measured in plasmalemma fractions isolated from basal nodes and roots. Three types of experiments were undertaken: (i) a field experiment, utilizing the seasonal growth and cessation cycle of a perennial plant; (ii) a cold acclimation experiment in hydroponics; and (iii) an instant freezing test. A specific fluctuation in K(+)Mg(2+)-ATPase activity was found throughout the seasonal growth of the plants (i). The K(+)Mg(2+)-ATPase activity peaks for both the basal node and the root plasmalemma were determined early in the spring before the renewal of growth. The lowest activity values in roots occurred at the time approaching flowering, and in basal nodes at the transition into the growth cessation. The K(+)Mg(2+)-ATPase activity was approximately 50% lower in the basal node plasmalemma of freezing-tolerant plants than of non-tolerant ones, when assessed at the optimal growth stage in hydroponics. In hydroponics (ii) and in the freezing test (iii), temperature stress was followed by a more pronounced change in the level of K(+)Mg(2+)-ATPase activity than in that of H(+) transport, and this change was more clearly differentiated in the basal node plasmalemma of contrasting genotypes than in the roots. Stress response was manifested differently in freezing-tolerant and non-tolerant plants at cold acclimation (4-2 degrees C) and at freezing (-8 degrees C) temperatures. Proton transport regulation via coupled changes in the hydrolysed ATP/transported proton ratio, as an attribute of freezing-tolerant plants, is discussed.


Assuntos
Aclimatação , Adenosina Trifosfatases/metabolismo , Membrana Celular/enzimologia , Festuca/crescimento & desenvolvimento , Congelamento , Prótons , Estações do Ano , Transporte Biológico , Festuca/enzimologia , Hidroponia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...