Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(2): 744-759, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425934

RESUMO

The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.

2.
J Mater Chem A Mater ; 11(40): 21884-21894, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38013680

RESUMO

Mordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations. This was expressed by different degrees of accessibility ascertained with a combination of toluene breakthrough and temperature programmed desorption (TPD), propylamine TPD, as well as sterically sensitive isobutane conversion. Rietveld refinement of the X-ray diffractograms elucidated the preferential siting of the smaller sodium cations in the constricted 8-ring, from which differences in Al distribution follow. Note, there are no organic structure directing agents utilized in this synthesis pointing at the important role of inorganic structure directing agents (ISDA).

3.
Chem Sci ; 14(36): 9704-9723, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736625

RESUMO

The direct activation of methane to methanol (MTM) proceeds through a chemical-looping process over Cu-oxo sites in zeolites. Herein, we extend the overall understanding of oxidation reactions over metal-oxo sites and C-H activation reactions by pinpointing the evolution of Cu species during reduction. To do so, a set of temperature-programmed reduction experiments were performed with CH4, C2H6, and CO. With a temperature ramp, the Cu reduction could be accelerated to detect changes in Cu speciation that are normally not detected due to the slow CH4 adsorption/interaction during MTM (∼200 °C). To follow the Cu-speciation with the three reductants, X-ray absorption spectroscopy (XAS), UV-vis and FT-IR spectroscopy were applied. Multivariate curve resolution alternating least-square (MCR-ALS) analysis was used to resolve the time-dependent concentration profiles of pure Cu components in the X-ray absorption near edge structure (XANES) spectra. Within the large datasets, as many as six different CuII and CuI components were found. Close correlations were found between the XANES-derived CuII to CuI reduction, CH4 consumption, and CO2 production. A reducibility-activity relationship was also observed for the Cu-MOR zeolites. Extended X-ray absorption fine structure (EXAFS) spectra for the pure Cu components were furthermore obtained with MCR-ALS analysis. With wavelet transform (WT) analysis of the EXAFS spectra, we were able to resolve the atomic speciation at different radial distances from Cu (up to about 4 Å). These results indicate that all the CuII components consist of multimeric CuII-oxo sites, albeit with different Cu-Cu distances.

4.
Chem Commun (Camb) ; 59(40): 6052-6055, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37102978

RESUMO

Cu-zeolites are found to activate the C-H bond of ethane already at 150 °C in a cyclic protocol and form ethylene with a high selectivity. Both the zeolite topology and Cu content are found to impact the ethylene yield. Ethylene adsorption studies with FT-IR, demonstrate that oligomerization of ethylene occurs over protonic zeolites, while this reaction does not occur over Cu-zeolites. We postulate that this observation is the origin of the high ethylene selectivity. Based on the experimental results, we propose that the reaction proceeds via the formation of an ethoxy intermediate.

5.
Dalton Trans ; 51(44): 16845-16851, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278772

RESUMO

We have monitored the regeneration of H-ZSM-5 via operando time-resolved powder X-Ray diffraction (PXRD) coupled with mass spectroscopy (MS). Parametric Rietveld refinements and calculation of the extra-framework electronic density by differential Fourier maps analysis provide details on the mode of coke removal combined with the corresponding sub-unit cell changes of the zeolite structure. It is clear that the coke removal is a complex process that occurs in at least two steps; a thermal decomposition followed by oxidation. In a coked zeolite, the straight 10-ring channel circumference is warped to an oval shape due to structural distortion induced by rigid aromatic coke species. The data presented explain why the difference in length between the a-vector and the b-vector of the MFI unit cell is a robust descriptor for bulky coke, as opposed to the unit cell volume, which is affected also by adsorbed species and thermal effects. Our approach holds the promise to quantify and identify coke removal (and formation) in structurally distinct locations within the zeolite framework.

6.
ACS Appl Mater Interfaces ; 14(18): 21059-21068, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482942

RESUMO

Cu-exchanged zeolites are widely studied materials because of their importance in industrial energetic and environmental processes. Cu redox speciation lies at the center of many of these processes but is experimentally difficult to investigate in a quantitative manner with regular laboratory equipment. This work presents a novel technique for this purpose that exploits the selective adsorption of CO over accessible Cu(I) sites to quantify them. In particular, isothermal volumetric adsorption measurements are performed at 50 °C on a series of opportunely pre-reduced Cu-ZSM-5 to assess the relative fraction of Cu(I); the setup is fairly simple and only requires a regular volumetric adsorption apparatus to perform the actual measurement. Repeatability tests are carried out on the measurement and activation protocols to assess the precision of the technique, and the relative standard deviation (RSD) obtained is less than 5%. Based on the results obtained for these materials, the same CO adsorption protocol is studied for the sample using infrared spectroscopy, and a good correlation is found between the results of the volumetric measurements and the absorbance of the peak assigned to the Cu(I)-CO adducts. A linear model is built for this correlation, and the molar attenuation coefficient is obtained, allowing for spectrophotometric quantification. The good sensitivity of the spectrophotometric approach and the precision and simplicity of the volumetric approach form a complementary set of tools to quantitatively study Cu redox speciation in these materials at the laboratory scale, allowing for a wide range of Cu compositions to be accurately investigated.

7.
Angew Chem Int Ed Engl ; 60(49): 25891-25896, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582094

RESUMO

A series of gas-phase reactants is used to treat a Cu-exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X-ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu-Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu-oxo species formed upon oxidation was further crosschecked by DFT-assisted fitting of the EXAFS data and by resonant Raman spectroscopy. Altogether, the CuI /CuII speciation clearly correlates with Cu proximity, with metal ion pairs quantitatively forming under an oxidative environment.

8.
J Am Chem Soc ; 142(40): 17105-17118, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902970

RESUMO

In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal-organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt-MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(µ-O)2]4+ and [Zr2(µ-OH)(µ-O)(OH)(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.

9.
Phys Chem Chem Phys ; 22(34): 18950-18963, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32578608

RESUMO

Cu-exchanged zeolites have been shown to possess Cu-oxo species active towards the direct methane to methanol (DMTM) conversion, carried out through a chemical-looping approach. Different Cu-zeolites have been investigated for the DMTM process, with Cu-mordenite (Cu-MOR) being among the most active. In this context, an accurate determination of the local structure and nuclearity of selective Cu-oxo species responsible for an efficient DMTM conversion still represents an ongoing challenge for characterization methods, including synchrotron-based X-ray absorption spectroscopy (XAS). Herein, we explore the potential of an alternative analysis of Extended X-ray Absorption Fine Structure (EXAFS) data using wavelet transform (WT) to enhance the technique sensitivity to multimeric Cu species hosted in the MOR framework. Combining ex situ XAS measurements under model red-ox conditions with in situ data collected after the key steps of the DMTM process, we demonstrate how EXAFS-WT enables unambiguous detection of Cu-Cu scattering contributions from multimeric Cu-species. As also confirmed by complementary in situ IR spectroscopy results, these are observed to dynamically respond to the chemical environment over the different conditions probed. We finally report a proof-of-concept EXAFS fit using the WT representation, applied to the structural refinement of O2-activated Cu-MOR. The fitting results reveal a Cu local coordination environment consistent with mono-(µ-oxo) di-copper cores, with Cu-Cu separation of ∼3.1 Å, paving the way to future applications and developments of the method in the field of Cu-zeolite research and beyond.

10.
J Am Chem Soc ; 142(2): 999-1009, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794194

RESUMO

Metal-organic frameworks (MOFs) show great prospect as catalysts and catalyst support materials. Yet, studies that address their dynamic, kinetic, and mechanistic role in target reactions are scarce. In this study, an exceptionally stable MOF catalyst consisting of Pt nanoparticles (NPs) embedded in a Zr-based UiO-67 MOF was subject to steady-state and transient kinetic studies involving H/D and 13C/12C exchange, coupled with operando infrared spectroscopy and density functional theory (DFT) modeling, targeting methanol formation from CO2/H2 feeds at 170 °C and 1-8 bar pressure. The study revealed that methanol is formed at the interface between the Pt NPs and defect Zr nodes via formate species attached to the Zr nodes. Methanol formation is mechanistically separated from the formation of coproducts CO and methane, except for hydrogen activation on the Pt NPs. Careful analysis of transient data revealed that the number of intermediates was higher than the number of open Zr sites in the MOF lattice around each Pt NP. Hence, additional Zr sites must be available for formate formation. DFT modeling revealed that Pt NP growth is sufficiently energetically favored to enable displacement of linkers and creation of open Zr sites during pretreatment. However, linker displacement during formate formation is energetically disfavored, in line with the excellent catalyst stability observed experimentally. Overall, the study provides firm evidence that methanol is formed at the interface of Pt NPs and linker-deficient Zr6O8 nodes resting on the Pt NP surface.

11.
Phys Chem Chem Phys ; 20(41): 26580-26590, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307454

RESUMO

The methanol-to-hydrocarbons (MTH) reaction represents a versatile, industrially viable alternative to crude-oil based processes for the production of chemicals and fuels. In the MTH reaction, the shape selectivity of acidic zeolites is exploited to direct the synthesis towards the desired product. However, due to unavoidable side reactions occurring under processing conditions, all MTH catalysts suffer deactivation due to coke formation. Though it is likely that some common characteristics for carbon formation exist for all zeolite topologies, it has been proposed that the differences in shape selectivity among the different catalysts will also influence the individual deactivation mechanisms. As deactivating species are mostly aromatic compounds, highly methylated benzenes and/or polycyclic aromatic hydrocarbons (PAHs) have been discussed. In some cases, these can further grow to extended carbon structures. Here, we have investigated the hydrocarbon reactivities and carbon formation for five topologically different zeolite catalysts through an operando UV-Raman approach, taking advantage of the high sensitivity of this technique towards aromatic and other carbonaceous species. The combination of the spectroscopic tool with activity measurements allowed us to obtain valuable details and some general trends on the deactivation paths during MTH. This approach made accessible unique insight on the complex chemistry of MTH by allowing the real-time observation of hydrocarbon transformations typical for the peculiar topology of each catalyst, usually inaccessible by ex situ techniques.

12.
J Am Chem Soc ; 140(45): 15270-15278, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346154

RESUMO

The direct conversion of methane to methanol (MTM) is a reaction that has the potential to disrupt a great part of the synthesis gas-derived chemical industry. However, despite many decades of research, active enough catalysts and suitable processes for industrial application are still not available. Recently, several copper-exchanged zeolites have shown considerable activity and selectivity in the direct MTM reaction. Understanding the nature of the active site in these materials is essential for any further development in the field. Herein, we apply multivariate curve resolution analysis of X-ray absorption spectroscopy data to accurately quantify the fraction of active Cu in Cu-MOR (MOR = mordenite), allowing an unambiguous determination of the active site nuclearity as a dicopper site. By rationalizing the compositional parameters and reaction conditions, we achieve the highest methanol yield per Cu yet reported for MTM over Cu-zeolites, of 0.47 mol/mol.

13.
Chem Soc Rev ; 47(22): 8097-8133, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30083666

RESUMO

We review the structural chemistry and reactivity of copper-exchanged molecular sieves with chabazite (CHA) topology, as an industrially applied catalyst in ammonia mediated reduction of harmful nitrogen oxides (NH3-SCR) and as a general model system for red-ox active materials (also the recent results in the direct conversion of methane to methanol are considered). Notwithstanding the apparent structural simplicity of the material, a crystalline zeolite with only one crystallographically independent T site, the Cu-SSZ-13 catalyst reveals a high degree of complexity that has been decrypted by state of the art characterization tools. From the reviewed data, the following important aspects in the understanding of the Cu-SSZ-13 catalyst clearly emerged: (i) the structural dynamics of the Cu-species require precise control of the environmental conditions during activation and characterization; (ii) the availability of a large library of well-defined catalysts with different Si/Al and Cu/Al compositional ratios is key in unravelling the red-ox properties of the active Cu sites; (iii) a multi-technique approach is required, combining complementary techniques able to provide independent structural, electronic and vibrational information; (iv) synchrotron radiation based techniques (EXAFS, XANES, XES and time-resolved powder XRD) played a relevant role; (v) operando methodology (possibly supported by advanced chemometric approaches) is essential in obtaining structure-reactivity relations; (vi) the support of theoretical studies has been indispensable for the interpretation of the experimental output from characterization and for a critical assessment of mechanistic models. The old literature that classified Cu-exchanged zeolites in the category of single-site catalysts has been partially disproved by the recent advanced studies where it has been shown that the active site in the low temperature NH3-SCR catalyst is a mobile Cu-molecular entity that "lives in symbiosis" with an inorganic solid framework. Only in the high temperature NH3-SCR regime do the mobile Cu-species lose their ligands and find docking sites at the internal walls of the zeolite framework, thus reflecting the idea of a single-site catalyst. After a brief introduction, the review is divided into three main parts devoted to characterization (Section 2), reactivity (Section 3), and industrial applications (Section 4), followed by some concluding remarks and providing a perspective of the field.

14.
J Phys Chem Lett ; 9(6): 1324-1328, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29494162

RESUMO

The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

15.
Chemphyschem ; 19(4): 484-495, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29250897

RESUMO

Substituting metals for either aluminum or phosphorus in crystalline, microporous aluminophosphates creates Brønsted acid sites, which are well known to catalyze several key reactions, including the methanol to hydrocarbons (MTH) reaction. In this work, we synthesized a series of metal-substituted aluminophosphates with AFI topology that differed primarily in their acid strength and that spanned a predicted range from high Brønsted acidity (H-MgAlPO-5, H-CoAlPO-5, and H-ZnAlPO-5) to medium acidity (H-SAPO-5) and low acidity (H-TiAlPO-5 and H-ZrAlPO-5). The synthesis was aimed to produce materials with homogenous properties (e.g. morphology, crystallite size, acid-site density, and surface area) to isolate the influence of metal substitution. This was verified by extensive characterization. The materials were tested in the MTH reaction at 450 °C by using dimethyl ether (DME) as feed. A clear activity difference was found, for which the predicted stronger acids converted DME significantly faster than the medium and weak Brønsted acidic materials. Furthermore, the stronger Brønsted acids (Mg, Co and Zn) produced more light alkenes than the weaker acids. The weaker acids, especially H-SAPO-5, produced more aromatics and alkanes, which indicates that the relative rates of competing reactions change upon decreasing the acid strength.

16.
J Am Chem Soc ; 139(42): 14961-14975, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28945372

RESUMO

Cu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps. We find that the CuII moieties responsible for the conversion are formed in the presence of O2 and that high temperature together with prolonged activation time increases the population of such active sites. We evidence a linear correlation between the reducibility of the materials and their methanol productivity. By optimizing the process conditions and material composition, we are able to reach a methanol productivity as high as 0.2 mol CH3OH/mol Cu (125 µmol/g), the highest value reported to date for Cu-SSZ-13. Our results clearly demonstrate that high populations of 2Al Z2CuII sites in 6r, favored at low values of both Si:Al and Cu:Al ratios, inhibit the material performance by being inactive for the conversion. Z[CuIIOH] complexes, although shown to be inactive, are identified as the precursors to the methane-converting active sites. By critical examination of the reported catalytic and spectroscopic evidence, we propose different possible routes for active-site formation.

17.
Faraday Discuss ; 197: 421-446, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28186217

RESUMO

Zeolites representing seven different topologies were subjected to life-time assessment studies as methanol to hydrocarbons (MTH) catalysts at 400 °C, P(MeOH) = 13 kPa and P(tot) = 100 kPa. The following topologies were studied: ZSM-22 (TON), ZSM-23 (MTT), IM-5 (IMF), ITQ-13 (ITH), ZSM-5 (MFI), mordenite (MOR) and beta (BEA). Two experimental approaches were used. In the first approach, each catalyst was tested at three different contact times, all giving 100% initial conversion. The life-time before conversion decreased to 50% at each contact time was measured and used to calculate critical contact times (i.e. the contact time needed to launch the autocatalytic MTH reaction) and deactivation rates. It was found that the critical contact time is strongly correlated with pore size: the smaller the pore size, the longer the critical contact time. The second experimental approach consisted of testing the catalysts in a double tube reactor with 100% initial conversion, and quenching the reaction after 4 consecutive times on stream, representing full, partial, and zero conversion. After quenching, the catalyst bed was divided into four segments, which were individually characterised for coke content (temperature-programmed oxidation) and specific surface area (N2 adsorption). The axial deactivation pattern was found to depend on pore size. With increasing pore size, the main source of coke formation changed from methanol conversion (1D 10-ring structures), to partly methanol, partly product conversion (3D 10-ring structures) and finally mainly product conversion (3D 12-ring structure). As a result, the methanol conversion capacity changed little with contact time for ZSM-5, while it increased with increasing contact time for the catalysts with smaller pore sizes, and decreased with increasing contact time for pore sizes larger than ZSM-5.

18.
Inorg Chem ; 53(18): 9509-15, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25148242

RESUMO

A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.

19.
Phys Chem Chem Phys ; 15(32): 13363-70, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23873376

RESUMO

Herein we report FTIR in situ adsorption of molecular hydrogen, carbon monoxide, water, methanol, pyridine and 2,4,6-trimethylpyridine (collidine) on nanosheet H-ZSM-5 which was recently studied in the methanol to hydrocarbons (MTH) reaction. The nature of the hydroxyl groups and surface species are described in detail. The IR spectrum of nanosheet H-ZSM-5 is dominated by silanols, which saturate the external surfaces. The acidity of Si(OH)Al is comparable to that observed in the case of standard microcrystalline H-ZSM-5. The study of the external surface allows the recognition of Si(OH)Al species located at the channel entrance, which are mostly all accessible to hindered molecules such as collidine.


Assuntos
Nanoestruturas/química , Zeolitas/química , Adsorção , Monóxido de Carbono/química , Hidrogênio/química , Metanol/química , Tamanho da Partícula , Piridinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
20.
Angew Chem Int Ed Engl ; 51(24): 5810-31, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22511469

RESUMO

Liquid hydrocarbon fuels play an essential part in the global energy chain, owing to their high energy density and easy transportability. Olefins play a similar role in the production of consumer goods. In a post-oil society, fuel and olefin production will rely on alternative carbon sources, such as biomass, coal, natural gas, and CO(2). The methanol-to-hydrocarbons (MTH) process is a key step in such routes, and can be tuned into production of gasoline-rich (methanol to gasoline; MTG) or olefin-rich (methanol to olefins; MTO) product mixtures by proper choice of catalyst and reaction conditions. This Review presents several commercial MTH projects that have recently been realized, and also fundamental research into the synthesis of microporous materials for the targeted variation of selectivity and lifetime of the catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...