Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Glob Antimicrob Resist ; 29: 185-193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34954415

RESUMO

OBJECTIVES: Chronic wounds are characterised by prolonged inflammation, low mitogenic activity, high protease/low inhibitor activity, microbiota changes and biofilm formation, combined with the aetiology of the original insult. One strategy to promote healing is to terminate the parasitism-like relationship between the biofilm-growing pathogen and host response. Antimicrobial peptide AMC-109 is a potential treatment with low resistance potential and broad-spectrum coverage with rapid bactericidal effect. We aimed to investigate whether adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. METHODS: Third-degree burns were inflicted on 33 BALB/c mice. Pseudomonas aeruginosa embedded in seaweed alginate was injected sub-eschar to mimic biofilm. Mice were randomised to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin, or placebo for 5 days followed by sample collection. RESULTS: A lower bacterial load was seen in the double-treated group compared with either monotherapy group (AMC-109, p = 0.0076; ciprofloxacin, p = 0.0266). To evaluate the innate host response, cytokines and growth factors were quantified. The pro-inflammatory response was dampened in the double-treated mice compared with the mono-ciprofloxacin-treated group (p = 0.0009). Lower mobilisation of neutrophils from the bone marrow was indicated by reduced G-CSF in all treatment groups compared with placebo. Improved tissue remodelling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. CONCLUSION: AMC-109 showed adjunctive antipseudomonal abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Biofilmes , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
2.
Antibiotics (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943728

RESUMO

Medical devices with an effective anti-colonization surface are important tools for combatting healthcare-associated infections. Here, we investigated the anti-colonization efficacy of antimicrobial peptides covalently attached to a gold model surface. The gold surface was modified by a self-assembled polyethylene glycol monolayer with an acetylene terminus. The peptides were covalently connected to the surface through a copper-catalyzed [3 + 2] azide-acetylene coupling (CuAAC). The anti-colonization efficacy of the surfaces varied as a function of the antimicrobial activity of the peptides, and very effective surfaces could be prepared with a 6 log unit reduction in bacterial colonization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...