Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 38(5): 2805-2816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594365

RESUMO

BACKGROUND: Indocyanine green fluorescence angiography (ICG-FA) may reduce perfusion-related complications of gastrointestinal anastomosis. Software implementations for quantifying ICG-FA are emerging to overcome a subjective interpretation of the technology. Comparison between quantification algorithms is needed to judge its external validity. This study aimed to measure the agreement for visceral perfusion assessment between two independently developed quantification software implementations. METHODS: This retrospective cohort analysis included standardized ICG-FA video recordings of patients who underwent esophagectomy with gastric conduit reconstruction between August 2020 until February 2022. Recordings were analyzed by two quantification software implementations: AMS and CPH. The quantitative parameter used to measure visceral perfusion was the normalized maximum slope derived from fluorescence time curves. The agreement between AMS and CPH was evaluated in a Bland-Altman analysis. The relation between the intraoperative measurement of perfusion and the incidence of anastomotic leakage was determined for both software implementations. RESULTS: Seventy pre-anastomosis ICG-FA recordings were included in the study. The Bland-Altman analysis indicated a mean relative difference of + 58.2% in the measurement of the normalized maximum slope when comparing the AMS software to CPH. The agreement between AMS and CPH deteriorated as the magnitude of the measured values increased, revealing a proportional (linear) bias (R2 = 0.512, p < 0.001). Neither the AMS nor the CPH measurements of the normalized maximum slope held a significant relationship with the occurrence of anastomotic leakage (median of 0.081 versus 0.074, p = 0.32 and 0.041 vs 0.042, p = 0.51, respectively). CONCLUSION: This is the first study to demonstrate technical differences in software implementations that can lead to discrepancies in ICG-FA quantification in human clinical cases. The possible variation among software-based quantification methods should be considered when interpreting studies that report quantitative ICG-FA parameters and derived thresholds, as there may be a limited external validity.


Assuntos
Algoritmos , Fístula Anastomótica , Angiofluoresceinografia , Verde de Indocianina , Software , Humanos , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Fístula Anastomótica/etiologia , Fístula Anastomótica/diagnóstico , Fístula Anastomótica/diagnóstico por imagem , Esofagectomia/efeitos adversos , Anastomose Cirúrgica/métodos , Corantes , Vísceras/irrigação sanguínea
2.
Ultrasound Obstet Gynecol ; 64(1): 36-43, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38339776

RESUMO

OBJECTIVE: Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18-22-week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA. METHODS: We developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four-chamber and three-vessel views were included in a logistic regression-based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver-operating-characteristics (ROC) curves. RESULTS: At the 18-22-week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z-scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA (n = 73) and healthy controls (n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%. CONCLUSIONS: The integration of AI technology with automated cardiac biometric measurements obtained during the 18-22-week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Coartação Aórtica , Inteligência Artificial , Coração Fetal , Ultrassonografia Pré-Natal , Humanos , Feminino , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/embriologia , Gravidez , Ultrassonografia Pré-Natal/métodos , Coração Fetal/diagnóstico por imagem , Coração Fetal/embriologia , Idade Gestacional , Biometria/métodos , Curva ROC , Sensibilidade e Especificidade , Dinamarca , Recém-Nascido , Adulto , Estudos de Casos e Controles , Valor Preditivo dos Testes
3.
Langenbecks Arch Surg ; 408(1): 67, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700999

RESUMO

PURPOSE: Incorrect assessment of tissue perfusion carries a significant risk of complications in surgery. The use of near-infrared (NIR) fluorescence imaging with Indocyanine Green (ICG) presents a possible solution. However, only through quantification of the fluorescence signal can an objective and reproducible evaluation of tissue perfusion be obtained. This narrative review aims to provide an overview of the available quantification methods for perfusion assessment using ICG NIR fluorescence imaging and to present an overview of current clinically utilized software implementations. METHODS: PubMed was searched for clinical studies on the quantification of ICG NIR fluorescence imaging to assess tissue perfusion. Data on the utilized camera systems and performed methods of quantification were collected. RESULTS: Eleven software programs for quantifying tissue perfusion using ICG NIR fluorescence imaging were identified. Five of the 11 programs have been described in three or more clinical studies, including Flow® 800, ROIs Software, IC Calc, SPY-Q™, and the Quest Research Framework®. In addition, applying normalization to fluorescence intensity analysis was described for two software programs. CONCLUSION: Several systems or software solutions provide a quantification of ICG fluorescence; however, intraoperative applications are scarce and quantification methods vary abundantly. In the widespread search for reliable quantification of perfusion with ICG NIR fluorescence imaging, standardization of quantification methods and data acquisition is essential.


Assuntos
Verde de Indocianina , Humanos , Perfusão
4.
Sci Rep ; 11(1): 21272, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711864

RESUMO

How ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species' latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


Assuntos
Aclimatação , Peixes , Temperatura , Clima Tropical , Animais , Biodiversidade , Evolução Biológica , Ecossistema , Peixes/classificação , Peixes/genética , Filogenia , Especificidade da Espécie
6.
Philos Trans R Soc Lond B Biol Sci ; 372(1727)2017 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-28673910

RESUMO

The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and front of groups. We investigated these predictions in sardine (Sardinella aurita) schools under attack from group hunting sailfish (Istiophorus platypterus) in the open ocean. Sailfish approached sardine schools about equally often from the front and rear, but prior to attack there was a chasing period in which sardines attempted to swim away from the predator. Consequently, all sailfish attacks were directed at the rear and peripheral positions of the school, resulting in higher predation risk for individuals at these positions. During attacks, sailfish slash at sardines with their bill causing prey injury including scale removal and tissue damage. Sardines injured in previous attacks were more often found in the rear half of the school than in the front half. Moreover, injured fish had lower tail-beat frequencies and lagged behind uninjured fish. Injuries inflicted by sailfish bills may, therefore, hinder prey swimming speed and drive spatial sorting in prey schools through passive self-assortment. We found only partial support for the theoretical predictions from current predator-prey models, highlighting the importance of incorporating more realistic predator-prey dynamics into these models.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.


Assuntos
Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Natação , Animais , Peixes/lesões , Golfo do México , Perciformes/fisiologia , Risco , Comportamento Social
7.
J Fish Biol ; 90(3): 819-833, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27981561

RESUMO

The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.


Assuntos
Osmorregulação/fisiologia , Consumo de Oxigênio , Percas/sangue , Salinidade , Temperatura , Animais , Ecossistema , Meio Ambiente , Água Doce , Brânquias/fisiologia , Concentração Osmolar , Osmose , Equilíbrio Hidroeletrolítico/fisiologia
8.
J Fish Biol ; 88(1): 51-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768971

RESUMO

As intermittent-flow respirometry has become a common method for the determination of resting metabolism or standard metabolic rate (SMR), this study investigated how much of the variability seen in the experiments was due to measurement error. Experiments simulated different constant oxygen consumption rates (M˙O2 ) of a fish, by continuously injecting anoxic water into a respirometer, altering the injection rate to correct for the washout error. The effect of respirometer-to-fish volume ratio (RFR) on SMR measurement and variability was also investigated, using the simulated constant M˙O2 and the M˙O2 of seven roach Rutilus rutilus in respirometers of two different sizes. The results show that higher RFR increases measurement variability but does not change the mean SMR established using a double Gaussian fit. Further, the study demonstrates that the variation observed when determining oxygen consumption rates of fishes in systems with reasonable RFRs mainly comes from the animal, not from the measuring equipment.


Assuntos
Cyprinidae/fisiologia , Metabolismo Energético , Consumo de Oxigênio , Animais , Metabolismo Basal , Oxigênio/metabolismo
9.
J Fish Biol ; 88(1): 252-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768977

RESUMO

This study compares the critical oxygen saturation (O2 crit ) levels of the shiner perch Cymatogaster aggregata obtained using two different methods wherein hypoxia is induced either by the fish's respiration (closed respirometry) or by degassing oxygen with nitrogen (intermittent-flow respirometry). Fish exhibited loss of equilibrium at a higher O2 saturation in the closed respirometry method when compared with the intermittent-flow method. Utilization of closed respirometry yielded O2 crit measurements that were almost twice as high as those obtained with intermittent-flow respirometry. The lower hypoxia tolerance in closed respirometry is consistent with additional stress, caused by a build-up of ammonia and carbon dioxide and a faster rate in dissolved oxygen decline. The results indicate that these two methods of determining hypoxia tolerance in aquatic organisms are not comparable, and that much care should be given to method choice.


Assuntos
Hipóxia , Consumo de Oxigênio , Percas/fisiologia , Amônia/metabolismo , Animais , Dióxido de Carbono/metabolismo , Oxigênio/fisiologia
10.
J Fish Biol ; 88(1): 26-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26603018

RESUMO

Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems.


Assuntos
Peixes/fisiologia , Consumo de Oxigênio , Animais , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...