Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(12): 122302, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394325

RESUMO

The gradient expansion is the fundamental organizing principle underlying relativistic hydrodynamics, yet understanding its convergence properties for general nonlinear flows has posed a major challenge. We introduce a simple method to address this question in a class of fluids modeled by Israel-Stewart-type relaxation equations. We apply it to (1+1)-dimensional flows and provide numerical evidence for factorially divergent gradient expansions. This generalizes results previously only obtained for (0+1)-dimensional comoving flows, notably Bjorken flow. We also demonstrate that the only known nontrivial case of a convergent hydrodynamic gradient expansion at the nonlinear level relies on Bjorken flow symmetries and becomes factorially divergent as soon as these are relaxed. Finally, we show that factorial divergence can be removed using a momentum space cutoff, which generalizes a result obtained earlier in the context of linear response.

2.
Phys Rev Lett ; 125(13): 132301, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034480

RESUMO

Hydrodynamic attractors have recently gained prominence in the context of early stages of ultrarelativistic heavy-ion collisions at the RHIC and LHC. We critically examine the existing ideas on this subject from a phase space point of view. In this picture the hydrodynamic attractor can be seen as a special case of the more general phenomenon of dynamical dimensionality reduction of phase space regions. We quantify this using principal component analysis. Furthermore, we adapt the well known slow-roll approximation to this setting. These techniques generalize easily to higher dimensional phase spaces, which we illustrate by a preliminary analysis of a dataset describing the evolution of a five-dimensional manifold of initial conditions immersed in a 16-dimensional representation of the phase space of the Boltzmann kinetic equation in the relaxation time approximation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...