Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 17(1): 37, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281021

RESUMO

BACKGROUND: The HLA complex is the most polymorphic region of the human genome, and its improved characterization can help us understand the genetics of human disease as well as the interplay between cancer and the immune system. The main function of HLA genes is to recognize "non-self" antigens and to present them on the cell surface to T cells, which instigate an immune response toward infected or transformed cells. While sequence variation in the antigen-binding groove of HLA may modulate the repertoire of immunogenic antigens presented to T cells, alterations in HLA expression can significantly influence the immune response to pathogens and cancer. METHODS: RNA sequencing was used here to accurately genotype the HLA region and quantify and compare the level of allele-specific HLA expression in tumors and patient-matched adjacent normal tissue. The computational approach utilized in the study types classical and non-classical Class I and Class II HLA alleles from RNA-seq while simultaneously quantifying allele-specific or personalized HLA expression. The strategy also uses RNA-seq data to infer immune cell infiltration into tumors and the corresponding immune cell composition of matched normal tissue, to reveal potential insights related to T cell and NK cell interactions with tumor HLA alleles. RESULTS: The genotyping method outperforms existing RNA-seq-based HLA typing tools for Class II HLA genotyping. Further, we demonstrate its potential for studying tumor-immune interactions by applying the method to tumor samples from two different subtypes of breast cancer and their matched normal breast tissue controls. CONCLUSIONS: The integrative RNA-seq-based HLA typing approach described in the study, coupled with HLA expression analysis, neoantigen prediction and immune cell infiltration, may help increase our understanding of the interplay between a patient's tumor and immune system; and provide further insights into the immune mechanisms that determine a positive or negative outcome following treatment with immunotherapy such as checkpoint blockade.


Assuntos
Neoplasias da Mama , Antígenos de Histocompatibilidade Classe I , Humanos , Feminino , Genótipo , Neoplasias da Mama/genética , Imunidade , Teste de Histocompatibilidade/métodos , Antígenos HLA/genética
2.
HLA ; 99(4): 313-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073457

RESUMO

Accurate and full-length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest-matched HLA allele among the known alleles in IPD-IMGT/HLA Database. These database-matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database-matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database-matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor-specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.


Assuntos
Antígenos HLA , Neoplasias , Alelos , Genótipo , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Neoplasias/genética , Análise de Sequência de DNA
3.
HLA ; 94(6): 504-513, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31496113

RESUMO

Precise HLA genotyping is of great clinical importance, albeit a challenging bioinformatics endeavor because of the hyper polymorphism of the HLA region. The ever-increasing availability of next-generation sequencing (NGS) solutions has spurred the development of several computational methods for predicting HLA genotypes from NGS data. Although some of these tools genotype HLA Class I alleles reasonably well, there is a need to incorporate integrative parameters related to ethnicity frequency information, in order to improve performance for both Class I and Class II alleles. Here, we present a bioinformatics method that addresses some of the current shortfalls in HLA genotyping from NGS. First, reads that map to the HLA region is aligned against a comprehensive library of reference HLA alleles. The allele type was then subsequently determined on the basis of the distribution of aligned reads, and the prior probabilities of the ethnic frequencies of alleles. Three public NGS datasets were used to benchmark the approach against six similar tools. The method outlined in this manuscript displayed an overall accuracy of 98.73% for Class I and 96.37% for Class II alleles. We illustrate an improved integrative approach that outperforms existing tools and is able to predict HLA alleles with improved fidelity for both Class I and Class II alleles.


Assuntos
Biologia Computacional/métodos , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Teste de Histocompatibilidade/métodos , Alelos , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Etnicidade/genética , Frequência do Gene , Genótipo , Humanos , Análise de Sequência de DNA/métodos
4.
BMC Med Genomics ; 12(1): 63, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096972

RESUMO

BACKGROUND: The accurate screening of tumor genomic landscapes for somatic mutations using high-throughput sequencing involves a crucial step in precise clinical diagnosis and targeted therapy. However, the complex inherent features of cancer tissue, especially, tumor genetic intra-heterogeneity coupled with the problem of sequencing and alignment artifacts, makes somatic variant calling a challenging task. Current variant filtering strategies, such as rule-based filtering and consensus voting of different algorithms, have previously helped to increase specificity, although comes at the cost of sensitivity. METHODS: In light of this, we have developed the NeoMutate framework which incorporates 7 supervised machine learning (ML) algorithms to exploit the strengths of multiple variant callers, using a non-redundant set of biological and sequence features. We benchmarked NeoMutate by simulating more than 10,000 bona fide cancer-related mutations into three well-characterized Genome in a Bottle (GIAB) reference samples. RESULTS: A robust and exhaustive evaluation of NeoMutate's performance based on 5-fold cross validation experiments, in addition to 3 independent tests, demonstrated a substantially improved variant detection accuracy compared to any of its individual composite variant callers and consensus calling of multiple tools. CONCLUSIONS: We show here that integrating multiple tools in an ensemble ML layer optimizes somatic variant detection rates, leading to a potentially improved variant selection framework for the diagnosis and treatment of cancer.


Assuntos
Genômica/métodos , Mutação , Neoplasias/genética , Aprendizado de Máquina Supervisionado , Sequenciamento de Nucleotídeos em Larga Escala , Fluxo de Trabalho
5.
PLoS Comput Biol ; 14(1): e1005890, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293508

RESUMO

Proteome balance is safeguarded by the proteostasis network (PN), an intricately regulated network of conserved processes that evolved to maintain native function of the diverse ensemble of protein species, ensuring cellular and organismal health. Proteostasis imbalances and collapse are implicated in a spectrum of human diseases, from neurodegeneration to cancer. The characteristics of PN disease alterations however have not been assessed in a systematic way. Since the chaperome is among the central components of the PN, we focused on the chaperome in our study by utilizing a curated functional ontology of the human chaperome that we connect in a high-confidence physical protein-protein interaction network. Challenged by the lack of a systems-level understanding of proteostasis alterations in the heterogeneous spectrum of human cancers, we assessed gene expression across more than 10,000 patient biopsies covering 22 solid cancers. We derived a novel customized Meta-PCA dimension reduction approach yielding M-scores as quantitative indicators of disease expression changes to condense the complexity of cancer transcriptomics datasets into quantitative functional network topographies. We confirm upregulation of the HSP90 family and also highlight HSP60s, Prefoldins, HSP100s, ER- and mitochondria-specific chaperones as pan-cancer enriched. Our analysis also reveals a surprisingly consistent strong downregulation of small heat shock proteins (sHSPs) and we stratify two cancer groups based on the preferential upregulation of ATP-dependent chaperones. Strikingly, our analyses highlight similarities between stem cell and cancer proteostasis, and diametrically opposed chaperome deregulation between cancers and neurodegenerative diseases. We developed a web-based Proteostasis Profiler tool (Pro2) enabling intuitive analysis and visual exploration of proteostasis disease alterations using gene expression data. Our study showcases a comprehensive profiling of chaperome shifts in human cancers and sets the stage for a systematic global analysis of PN alterations across the human diseasome towards novel hypotheses for therapeutic network re-adjustment in proteostasis disorders.


Assuntos
Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Proteostase , Trifosfato de Adenosina/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Chaperonas Moleculares/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...