Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(9): e45315, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028927

RESUMO

Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.


Assuntos
Sacos Aéreos/fisiologia , Regulação da Temperatura Corporal/fisiologia , Aves Domésticas/fisiologia , Traqueia/fisiologia , Sacos Aéreos/anatomia & histologia , Animais , Traqueia/anatomia & histologia
2.
J Biomech ; 43(3): 387-96, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19880120

RESUMO

While there are a growing number of increasingly complex methodologies available to model geometry and material properties of bones, these models still cannot accurately describe physical behaviour of the skeletal system unless the boundary conditions, especially muscular loading, are correct. Available in vivo measurements of muscle forces are mostly highly invasive and offer no practical way to validate the outcome of any computational model that predicts muscle forces. However, muscle forces can be verified indirectly using the fundamental property of living tissue to functional adaptation and finite element (FE) analysis. Even though the mechanisms of the functional adaptation are not fully understood, its result is clearly seen in the shape and inner structure of bones. The FE method provides a precise tool for analysis of the stress/strain distribution in the bone under given loading conditions. The present work sets principles for the determination of the muscle forces on the basis of the widely accepted view that biological systems are optimized light-weight structures with minimised amount of unloaded/underloaded material and hence evenly distributed loading throughout the structure. Bending loading of bones is avoided/compensated in bones under physiological loading. Thus, bending minimisation provides the basis for the determination of the musculoskeletal system loading. As a result of our approach, the muscle forces for a human femur during normal gait and sitting down (peak hip joint force) are obtained such that the bone is loaded predominantly in compression and the stress distribution in proximal and diaphyseal femur corresponds to the material distribution in bone.


Assuntos
Força Compressiva/fisiologia , Módulo de Elasticidade/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Humanos , Sensibilidade e Especificidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...