Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422610

RESUMO

Fascioloidosis is a parasitic disease caused by a trematode Fascioloides magna. Since major histocompatibility complex (MHC) genes play an important role in the immune response, the aim of this study was to compare the potential differences in MHC class II SLA-DRB1 exon 2 genes between wild boar populations from infected (cases) and non-infected areas (controls). During the winter of 2021, a total of 136 wild boar tissue samples were collected, 39 cases and 97 controls. DNA was extracted and sequenced using the Illumina platform. Differences in distributions of allele combinations were calculated using the Chi-Square test for homogeneity and between proportions using the large-sample test and Fisher-Irwin test. Analysis revealed 19 previously described swine leucocyte antigen (SLA) alleles. The number of polymorphic sites was 79 (29.6%), with 99 mutations in total. Nucleotide diversity π was estimated at 0.11. Proportions of the alleles SLA-DRB1*12:05 (p = 0.0008379) and SLA-DRB1*0101 (p = 0.0002825) were statistically significantly higher in controls, and proportions of the SLA-DRB1*0602 (p = 0.006059) and SLA-DRB1*0901 (p = 0.0006601) in cases. Alleles SLA-DRB1*04:09, SLA-DRB1*0501, SLA-DRB1*11:09, and SLA-DRB1*1301 were detected only in cases, while SLA-DRB1*0404, SLA-DRB1*0701, SLA-DRB1*02:10, and SLA-DRB1*04:08 were present only in controls. We did not confirm the existence of specific alleles that could be linked to F. magna infection. Detected high variability of the MHC class II SLA-DRB1 exon 2 genes indicate high resistance potential against various pathogens.

2.
Animals (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139311

RESUMO

Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences. In this study, we compared the performance of molecular cloning with Illumina and Ion Torrent NGS sequencing in MHC-DRB genotyping of single-locus species (roe deer) and species with multiple DRB loci (red deer) in an attempt to adopt a reliable and straightforward method that does not require complex bioinformatic analyses. Our results show that all methods work similarly well in roe deer, but we demonstrate non-consistency in results across methods in red deer. With Illumina sequencing, we detected a maximum number of alleles in 10 red deer individuals (42), while other methods were somewhat less accurate as they scored 69-81% of alleles detected with Illumina sequencing.

3.
Sci Rep ; 11(1): 12300, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112859

RESUMO

The aoudad (Ammotragus lervia Pallas 1777) is an ungulate species, native to the mountain ranges of North Africa. In the second half of the twentieth century, it was successfully introduced in some European countries, mainly for hunting purposes, i.e. in Croatia, the Czech Republic, Italy, and Spain. We used neutral genetic markers, the mitochondrial DNA control region sequence and microsatellite loci, to characterize and compare genetic diversity and spatial pattern of genetic structure on different timeframes among all European aoudad populations. Four distinct control region haplotypes found in European aoudad populations indicate that the aoudad has been introduced in Europe from multiple genetic sources, with the population in the Sierra Espuña as the only population in which more than one haplotype was detected. The number of detected microsatellite alleles within all populations (< 3.61) and mean proportion of shared alleles within all analysed populations (< 0.55) indicates relatively low genetic variability, as expected for new populations funded by a small number of individuals. In STRUCTURE results with K = 2-4, Croatian and Czech populations cluster in the same genetic cluster, indicating joined origin. Among three populations from Spain, Almeria population shows as genetically distinct from others in results, while other Spanish populations diverge at K = 4. Maintenance of genetic diversity should be included in the management of populations to sustain their viability, specially for small Czech population with high proportion of shared alleles (0.85) and Croatian population that had the smallest estimated effective population size (Ne = 5.4).


Assuntos
Variação Genética/genética , Genética Populacional , Mamíferos/genética , Ruminantes/genética , Alelos , Animais , República Tcheca , DNA Mitocondrial/genética , Europa (Continente) , Haplótipos/genética , Repetições de Microssatélites/genética , Ruminantes/classificação , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...