Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6684): 721-726, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359125

RESUMO

We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.


Assuntos
Antibacterianos , Hidrocarbonetos Aromáticos com Pontes , Farmacorresistência Bacteriana Múltipla , Lincosamidas , Oxepinas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Eritromicina/química , Eritromicina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Oxepinas/síntese química , Oxepinas/química , Oxepinas/farmacologia , Lincosamidas/síntese química , Lincosamidas/química , Lincosamidas/farmacologia , Animais , Camundongos , Desenho de Fármacos , Ribossomos/química
2.
Nat Chem Biol ; 20(7): 867-876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38238495

RESUMO

The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/antagonistas & inibidores , Metilação , Modelos Moleculares , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/genética
3.
Mol Cell ; 84(4): 715-726.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183984

RESUMO

Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.


Assuntos
Hidrolases de Éster Carboxílico , Peptídeos , Ribossomos , Ribossomos/metabolismo , Peptídeos/genética , Bactérias/genética , Controle de Qualidade , Biossíntese de Proteínas
4.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808676

RESUMO

The ribosome is an essential drug target as many classes of clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent mechanisms of resistance to PTC-acting drugs is C8-methylation of the universally conserved adenine residue 2503 (A2503) of the 23S rRNA by the methyltransferase Cfr. Despite its clinical significance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. In this work, we developed a method to express a functionally-active Cfr-methyltransferase in the thermophilic bacterium Thermus thermophilus and report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-tRNAs. Our structures reveal that an allosteric rearrangement of nucleotide A2062 upon Cfr-methylation of A2503 is likely responsible for the inability of some PTC inhibitors to bind to the ribosome, providing additional insights into the Cfr resistance mechanism. Lastly, by determining the structures of the Cfr-methylated ribosome in complex with the antibiotics iboxamycin and tylosin, we provide the structural bases behind two distinct mechanisms of evading Cfr-mediated resistance.

5.
Nat Commun ; 14(1): 4196, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452045

RESUMO

The ever-growing rise of antibiotic resistance among bacterial pathogens is one of the top healthcare threats today. Although combination antibiotic therapies represent a potential approach to more efficiently combat infections caused by susceptible and drug-resistant bacteria, only a few known drug pairs exhibit synergy/cooperativity in killing bacteria. Here, we discover that well-known ribosomal antibiotics, hygromycin A (HygA) and macrolides, which target peptidyl transferase center and peptide exit tunnel, respectively, can act cooperatively against susceptible and drug-resistant bacteria. Remarkably, HygA slows down macrolide dissociation from the ribosome by 60-fold and enhances the otherwise weak antimicrobial activity of the newest-generation macrolide drugs known as ketolides against macrolide-resistant bacteria. By determining a set of high-resolution X-ray crystal structures of drug-sensitive wild-type and macrolide-resistant Erm-methylated 70S ribosomes in complex with three HygA-macrolide pairs, we provide a structural rationale for the binding cooperativity of these drugs and also uncover the molecular mechanism of overcoming Erm-type resistance by macrolides acting together with hygromycin A. Altogether our structural, biochemical, and microbiological findings lay the foundation for the subsequent development of synergistic antibiotic tandems with improved bactericidal properties against drug-resistant pathogens, including those expressing erm genes.


Assuntos
Cetolídeos , Macrolídeos , Macrolídeos/farmacologia , Antibacterianos/química , Cinamatos/farmacologia , Higromicina B/farmacologia , Cetolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
6.
Biochemistry (Mosc) ; 86(8): 942-951, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488571

RESUMO

Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.


Assuntos
Biossíntese de Proteínas , RNA Bacteriano/química , Ribossomos/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Bioquímica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Conformação de Ácido Nucleico , Peptídeos/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294725

RESUMO

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Resistência Microbiana a Medicamentos/genética , Eritromicina/química , Eritromicina/farmacologia , Genes Bacterianos , Cetolídeos/química , Cetolídeos/farmacocinética , Macrolídeos/química , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Insercional , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos
8.
Nat Commun ; 12(1): 2803, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990576

RESUMO

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Assuntos
Antibacterianos/farmacologia , Macrolídeos/farmacologia , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Sítios de Ligação , Microscopia Crioeletrônica , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Humanos , Macrolídeos/química , Modelos Moleculares , Mutação , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Relação Estrutura-Atividade
9.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462493

RESUMO

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Assuntos
Macrolídeos/metabolismo , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Metilação , RNA Ribossômico/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Ribossomos/genética , Ribossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(4): 1971-1975, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932436

RESUMO

While most of the ribosome-targeting antibiotics are bacteriostatic, some members of the macrolide class demonstrate considerable bactericidal activity. We previously showed that an extended alkyl-aryl side chain is the key structural element determining the macrolides' slow dissociation from the ribosome and likely accounts for the antibiotics' cidality. In the nontranslating Escherichia coli ribosome, the extended side chain of macrolides interacts with 23S ribosomal RNA (rRNA) nucleotides A752 and U2609, that were proposed to form a base pair. However, the existence of this base pair in the translating ribosome, its possible functional role, and its impact on the binding and cidality of the antibiotic remain unknown. By engineering E. coli cells carrying individual and compensatory mutations at the 752 and 2609 rRNA positions, we show that integrity of the base pair helps to modulate the ribosomal response to regulatory nascent peptides, determines the slow dissociation rate of the extended macrolides from the ribosome, and increases their bactericidal effect. Our findings demonstrate that the ability of antibiotics to kill bacterial cells relies not only on the chemical nature of the inhibitor, but also on structural features of the target.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/crescimento & desenvolvimento , Macrolídeos/farmacologia , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Antibacterianos/química , Pareamento de Bases , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Macrolídeos/química , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/genética
11.
RNA ; 25(5): 600-606, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733327

RESUMO

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.


Assuntos
Antibacterianos/química , Cloranfenicol/química , Eritromicina/química , Subunidades Ribossômicas/efeitos dos fármacos , Thermus thermophilus/efeitos dos fármacos , Antibacterianos/farmacologia , Sítios de Ligação , Ligação Competitiva , Cloranfenicol/farmacologia , Cristalografia por Raios X , Eritromicina/farmacologia , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(52): 13673-13678, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229833

RESUMO

Antibiotics can cause dormancy (bacteriostasis) or induce death (cidality) of the targeted bacteria. The bactericidal capacity is one of the most important properties of antibacterial agents. However, the understanding of the fundamental differences in the mode of action of bacteriostatic or bactericidal antibiotics, especially those belonging to the same chemical class, is very rudimentary. Here, by examining the activity and binding properties of chemically distinct macrolide inhibitors of translation, we have identified a key difference in their interaction with the ribosome, which correlates with their ability to cause cell death. While bacteriostatic and bactericidal macrolides bind in the nascent peptide exit tunnel of the large ribosomal subunit with comparable affinities, the bactericidal antibiotics dissociate from the ribosome with significantly slower rates. The sluggish dissociation of bactericidal macrolides correlates with the presence in their structure of an extended alkyl-aryl side chain, which establishes idiosyncratic interactions with the ribosomal RNA. Mutations or chemical alterations of the rRNA nucleotides in the drug binding site can protect cells from macrolide-induced killing, even with inhibitor concentrations that significantly exceed those required for cell growth arrest. We propose that the increased translation downtime due to slow dissociation of the antibiotic may damage cells beyond the point where growth can be reinitiated upon the removal of the drug due to depletion of critical components of the gene-expression pathway.


Assuntos
Antibacterianos/química , Macrolídeos/química , Ribossomos/química , Antibacterianos/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Eritromicina/química , Eritromicina/farmacologia , Cinética , Macrolídeos/farmacologia , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Relação Estrutura-Atividade , Termodinâmica
13.
Nucleic Acids Res ; 45(16): 9573-9582, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934499

RESUMO

Antibiotics methymycin (MTM) and pikromycin (PKM), co-produced by Streptomyces venezuelae, represent minimalist macrolide protein synthesis inhibitors. Unlike other macrolides, which carry several side chains, a single desosamine sugar is attached to the macrolactone ring of MTM and PKM. In addition, the macrolactone scaffold of MTM is smaller than in other macrolides. The unusual structure of MTM and PKM and their simultaneous secretion by S. venezuelae bring about the possibility that two compounds would bind to distinct ribosomal sites. However, by combining genetic, biochemical and crystallographic studies, we demonstrate that MTM and PKM inhibit translation by binding to overlapping sites in the ribosomal exit tunnel. Strikingly, while MTM and PKM readily arrest the growth of bacteria, ∼40% of cellular proteins continue to be synthesized even at saturating concentrations of the drugs. Gel electrophoretic analysis shows that compared to other ribosomal antibiotics, MTM and PKM prevent synthesis of a smaller number of cellular polypeptides illustrating a unique mode of action of these antibiotics.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/efeitos dos fármacos , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ligação Competitiva , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Macrolídeos/química , Macrolídeos/metabolismo , Fator G para Elongação de Peptídeos/genética , Ribossomos/química , Ribossomos/metabolismo
14.
Bioconjug Chem ; 24(11): 1861-9, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24090034

RESUMO

During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.


Assuntos
Aminoácidos/química , Antibacterianos/química , Ribossomos/química , Ribossomos/efeitos dos fármacos , Tilosina/análogos & derivados , Animais , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Escherichia coli , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Tilosina/química , Tilosina/farmacologia
15.
Antimicrob Agents Chemother ; 56(4): 1774-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252829

RESUMO

A reporter construct was created on the basis of the transcription attenuator region of the Escherichia coli tryptophan operon. Dual-fluorescent-protein genes for red fluorescent protein and cerulean fluorescent protein were used as a sensor and internal control of gene expression. The sequence of the attenuator was modified to avoid tryptophan sensitivity while preserving sensitivity to ribosome stalling. Antimicrobial compounds which cause translation arrest at the stage of elongation induce the reporter both in liquid culture and on an agar plate. This reporter could be used for high-throughput screening of translation inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas Luminescentes/genética , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ágar , Sequência de Aminoácidos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Meios de Cultura , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Micromonospora/metabolismo , Dados de Sequência Molecular , Óperon , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Siphoviridae/genética , Triptofano/genética , Triptofano/farmacologia , Proteína Vermelha Fluorescente
16.
J Mol Biol ; 416(5): 656-67, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22245576

RESUMO

Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.


Assuntos
Puromicina/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
17.
Protein Sci ; 15(2): 242-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16385000

RESUMO

Molecular chaperones of the Hsp70 family (bacterial DnaK, DnaJ, and GrpE) were shown to be strictly required for refolding of firefly luciferase from a denatured state and thus for effective restoration of its activity. At the same time the luciferase was found to be synthesized in an Escherichia coli cell-free translation system in a highly active state in the extract with no chaperone activity. The addition of the chaperones to the extract during translation did not raise the activity of the enzyme. The abrupt arrest of translation by the addition of a translational inhibitor led to immediate cessation of the enzyme activity accumulation, indicating the cotranslational character of luciferase folding. The results presented suggest that the chaperones of the Hsp70 family are not required for effective cotranslational folding of firefly luciferase.


Assuntos
Proteínas de Choque Térmico HSP70/química , Luciferases de Vaga-Lume/química , Dobramento de Proteína , Sistema Livre de Células , Escherichia coli/metabolismo , Luciferases de Vaga-Lume/genética , Chaperonas Moleculares/química , Biossíntese de Proteínas , Modificação Traducional de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...