Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 32(18): 2488-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21853446

RESUMO

A high-throughput cell electrofusion microfluidic chip has been designed, fabricated on a silicon-on-insulator wafer and tested for in vitro cell fusion under a low applied voltage. The developed chip consists of six individual straight microchannels with a 40-µm thickness conductive highly doped Si layer as the microchannel wall. In each microchannel, there are 75 pairs of counter protruding microelectrodes, between which the cell electrofusion is performed. The entire highly doped Si layer is covered by a 2-µm thickness aluminum film to maintain a consistent electric field between different protruding microelectrode pairs. A 150-nm thickness SiO2 film is subsequently deposited on the top face of each protruding microelectrode for better biocompatibility. Owing to the short distance between two counter protruding microelectrodes, a high electric field can be generated for cell electrofusion with a low voltage imposed across the electrodes. Both mammalian cells and plant protoplasts were used to test the cell electrofusion. About 42-68% cells were aligned to form cell-cell pairs by the dielectrophoretic force. After cell alignment, cell pairs were fused to form hybrid cells under the control of cell electroporation and electrofusion signals. The averaged fusion efficiency in the paired cells is above 40% (the highest was about 60%), which is much higher than the traditional polyethylene glycol method (<5%) and traditional electrofusion methods (∼12%). An individual cell electrofusion process could be completed within 10 min, indicating a capability of high throughput.


Assuntos
Fusão Celular/instrumentação , Fusão Celular/métodos , Eletroforese/instrumentação , Eletroporação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Alumínio/química , Desenho de Equipamento , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Microeletrodos , Protoplastos/citologia , Nicotiana/citologia
2.
J Am Chem Soc ; 126(18): 5750-62, 2004 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15125668

RESUMO

Laser flash photolysis (LFP, 308 nm) of endo-10-halo-10'-N,N-dimethylcarboxamidetricyclo[4.3.1.0]-deca-2,4-diene (1Cl and 1F) releases indan and halocarbene amide (2Cl and 2F). Although the carbenes are not UV-vis active, they react rapidly with pyridine to form ylides (4Cl, 4F), which are readily detected in LFP experiments (lambda(max) = 450 nm). Dioxane decreases the observed rate of carbene reaction with pyridine in CF(2)ClCFCl(2). Small amounts of THF decrease the observed rate of reaction of carbene 2F with pyridine but increase the rate of reaction of carbene 2Cl with pyridine. LFP (266 nm) of dienes 1Cl and 1F in CF(2)ClCFCl(2) with IR detection produces carbenes 2Cl and 2F with carbonyl vibrations at 1635 and 1650 cm(-1), respectively. In dioxane or THF solvent, LFP produces the corresponding ether ylides (5Cl, 5F) by capture of carbenes 2Cl and 2F. The ylides have broad carbonyl vibrations between 1560 and 1610 cm(-1). The addition of a small amount of dioxane in CFCl(2)CF(2)Cl extends the lifetime of the carbene. This observation, together with the ether-induced retardation of the rates of carbene capture by tetramethylethylene and pyridine, is evidence for solvation of the carbene by dioxane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...