Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
2.
Phys Rev Lett ; 124(1): 017003, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976700

RESUMO

The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.

3.
Phys Rev Lett ; 121(13): 130406, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312096

RESUMO

A key quantity in strongly interacting resonant Fermi gases is the contact C, which characterizes numerous properties such as the momentum distribution at large momenta or the pair correlation function at short distances. The temperature dependence of C was measured at unitarity, where existing theoretical predictions differ substantially even at the qualitative level. We report accurate data for the contact and the momentum distribution of the unitary gas in the normal phase, obtained by bold diagrammatic Monte Carlo and Borel resummation. Our results agree with experimental data within error bars and provide crucial benchmarks for the development of advanced theoretical treatments and precision measurements.

4.
Phys Rev Lett ; 110(18): 185701, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683221

RESUMO

Quantum transition points in the J-Q model--the test bed of the deconfined critical point theory--and the SU(2)-symmetric discrete noncompact CP(1) representation of the deconfined critical action are directly compared by the flowgram method. We find that the flows of two systems coincide in a broad region of linear system sizes (10 < L < 50 for the J-Q model), implying that the deconfined critical point theory correctly captures the mesoscopic physics of competition between the antiferromagnetic and valence-bond orders in quantum spin systems. At larger sizes, however, we observe significant deviations between the two flows which both demonstrate strong violations of scale invariance. This reliably rules out the second-order transition scenario in at least one of the two models and suggests the most likely explanation for the nature of the transition in the J-Q model.

5.
Phys Rev Lett ; 110(7): 070601, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166359

RESUMO

We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing--cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

6.
Phys Rev Lett ; 109(2): 025302, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030174

RESUMO

The indistinguishability of particles is a crucial factor destabilizing crystalline order in Bose systems. We describe this effect in terms of damped quasiparticle modes and in the dual language of Feynman paths, and illustrate it by first-principles simulations of dipolar bosons and bulk condensed 4He. The first major implication is that, contrary to conventional wisdom, zero-point motion alone cannot prevent 4He crystallization at near zero pressure. Second, Bose statistics leads to quantum jamming at finite temperature, dramatically enhancing the metastability of superfluid glasses. Only studies of indistinguishable particles can reliably address these issues.

7.
Phys Rev Lett ; 107(18): 185301, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107640

RESUMO

We establish the full ground state phase diagram of the disordered Bose-Hubbard model in two dimensions at a unity filling factor via quantum Monte Carlo simulations. Similarly to the three-dimensional case we observe extended superfluid regions persisting up to extremely large values of disorder and interaction strength which, however, have small superfluid fractions and thus low transition temperatures. In the vicinity of the superfluid-insulator transition of the pure system, we observe an unexpectedly weak--almost not resolvable--sensitivity of the critical interaction to the strength of (weak) disorder.

8.
Phys Rev Lett ; 104(24): 245705, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867315

RESUMO

We discuss generic limits posed by the trap in atomic systems on the accurate determination of critical parameters for second-order phase transitions, from which we deduce optimal protocols to extract them. We show that under current experimental conditions the in situ density profiles are barely suitable for an accurate study of critical points in the strongly correlated regime. Contrary to recent claims, the proper analysis of time-of-fight images yields critical parameters accurately.

10.
Phys Rev Lett ; 103(14): 140402, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905549

RESUMO

We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove the compressibility of the system on the superfluid-insulator critical line and in its neighborhood. These conclusions follow from a general theorem of inclusions, which states that for any transition in a disordered system, one can always find rare regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott insulator to Bose glass phase transition: the critical disorder bound Delta(c) corresponding to the onset of disorder-induced superfluidity, satisfies the relation Delta(c)>Eg/2, with Eg/2 the half-width of the Mott gap in the pure system.

11.
Phys Rev Lett ; 103(17): 175301, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905768

RESUMO

In the experiment on superfluid transport in solid 4He [Phys. Rev. Lett. 100, 235301 (2008)], Ray and Hallock observed an anomalously large isochoric compressibility: the supersolid samples demonstrated a significant and apparently spatially uniform response of density and pressure to chemical potential, applied locally through Vycor "electrodes." We propose that the effect is due to superclimb: edge dislocations can climb because of mass transport along superfluid cores. We corroborate the scenario by ab initio simulations of an edge dislocation in solid 4He at T = 0.5 K. We argue that at low temperature the effect must be suppressed due to a crossover to the smooth dislocation.

13.
Phys Rev Lett ; 101(15): 155303, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999609

RESUMO

We analyze the interference pattern produced by ultracold atoms released from an optical lattice, commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite times of flight the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms and compare the latter to experiments.

14.
Phys Rev Lett ; 101(9): 097202, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851651

RESUMO

We provide a semiquantitative tool, derived from first-principles simulations, for answering the question of whether certain types of defects in solid 4He support mass superflow. Although ideal crystals of 4He are not supersolid, the gap for vacancy creation closes when applying a moderate stress. While a homogeneous system becomes unstable at this point, the stressed core of crystalline defects (dislocations and grain boundaries) can turn superfluid.

15.
Phys Rev Lett ; 101(5): 050405, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764379

RESUMO

Monte Carlo simulations of the SU(2)-symmetric deconfined critical point action reveal strong violations of scale invariance for the deconfinement transition. We find compelling evidence that the generic runaway renormalization flow of the gauge coupling is to a weak first-order transition, similar to the case of U(1) x U(1) symmetry. Our results imply that recent numeric studies of the Nèel antiferromagnet to valence bond solid quantum phase transition in SU(2)-symmetric models were not accurate enough in determining the nature of the transition.

16.
Phys Rev Lett ; 99(3): 035301, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678292

RESUMO

On the basis of first-principles Monte Carlo simulations we find that the screw dislocation along the hexagonal axis of an hcp 4He crystal features a superfluid (at T-->0) core. This is the first example of a regular quasi-one-dimensional supersolid--the phase featuring both translational and superfluid orders, and one of the cleanest cases of a Luttinger-liquid system. In contrast, the same type of screw dislocation in solid H2 is insulating.

17.
Phys Rev Lett ; 98(13): 135301, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17501209

RESUMO

By large-scale quantum Monte Carlo simulations we show that grain boundaries in 4He crystals are generically superfluid at low temperature, with a transition temperature of the order of approximately 0.5 K at the melting pressure; nonsuperfluid grain boundaries are found only for special orientations of the grains. We also find that close vicinity to the melting line is not a necessary condition for superfluid grain boundaries, and a grain boundary in direct contact with the superfluid liquid at the melting curve is found to be mechanically stable and the grain-boundary superfluidity observed by Sasaki et al. [Science 313, 1098 (2006)10.1126/science.1130879] is not just a crack filled with superfluid.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036701, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17025780

RESUMO

A detailed description is provided of a new worm algorithm, enabling the accurate computation of thermodynamic properties of quantum many-body systems in continuous space, at finite temperature. The algorithm is formulated within the general path integral Monte Carlo (PIMC) scheme, but also allows one to perform quantum simulations in the grand canonical ensemble, as well as to compute off-diagonal imaginary-time correlation functions, such as the Matsubara Green function, simultaneously with diagonal observables. Another important innovation consists of the expansion of the attractive part of the pairwise potential energy into elementary (diagrammatic) contributions, which are then statistically sampled. This affords a complete microscopic account of the long-range part of the potential energy, while keeping the computational complexity of all updates independent of the size of the simulated system. The computational scheme allows for efficient calculations of the superfluid fraction and off-diagonal correlations in space-time, for system sizes which are orders of magnitude larger than those accessible to conventional PIMC. We present illustrative results for the superfluid transition in bulk liquid 4He in two and three dimensions, as well as the calculation of the chemical potential of hcp 4He.

19.
Phys Rev Lett ; 97(8): 080401, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17026281

RESUMO

The supersolid state of matter, exhibiting nondissipative flow in solids, has been elusive for 35 years. The recent discovery of a nonclassical moment of inertia in solid 4He by Kim and Chan provided the first experimental evidence, although the interpretation in terms of supersolidity of the ideal crystal phase remains a subject to debate. Using quantum Monte Carlo methods we investigate the long-standing question of vacancy-induced superflow and find that vacancies in a 4He crystal phase separate instead of forming a supersolid. On the other hand, nonequilibrium vacancies relaxing on defects of polycrystalline samples could provide an explanation for the experimental observations.

20.
Phys Rev Lett ; 91(23): 236401, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14683203

RESUMO

We present accurate results for optical conductivity of the three dimensional Fröhlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and nonperturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong-coupling regime is "washed out" by large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...