Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1383120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681773

RESUMO

Introduction: In neonatology, the accurate determination of vital parameters plays a pivotal role in monitoring critically ill newborns and premature infants, as well as aiding in disease diagnosis. In response to the limitations associated with contact-based measurement methods, substantial efforts have been directed toward developing contactless measurement techniques, particularly over the past decade. Methods: Building upon the insights gained from our pilot study, we realized a new investigation to assess the precision of our imaging photoplethysmography-based system within a clinical environment of the neonatal intermediate care unit. We conducted measurements in 20 preterm infants or newborns requiring therapeutic interventions. As a point of reference, we employed a conventional pulse oximeter. To analytically predict measurement artifacts, we analyzed the potential influence of confounding factors, such as motion artifacts, illumination fluctuations (under- and overexposure), and loss of region of interest prior to heart rate evaluation. This reduced the amount of data we evaluated for heart rate to 56.1% of its original volume. Results: In artifact-free time segments, the mean difference between the pulse oximetry and the imaging photoplethysmography-based system for 1 s sampling intervals resulted in -0.2 bpm (95% CI -0.8 to 0.4, LOA ±â€…12.2). For the clinical standard of 8 s averaging time, the mean difference resulted in -0.09 bpm (95% CI -0.7 to 0.6, LOA ±â€…10.1). These results match the medical standards. Discussion: While further research is needed to increase the range of measurable vital parameters and more diverse patient collectives need to be considered in the future, we could demonstrate very high accuracy for non-contact heart rate measurement in newborn infants in the clinical setting, provided artifacts are excluded. In particular, performing a priori signal assessment helps make clinical measurements safer by identifying unreliable readings.

2.
Front Pediatr ; 10: 897961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016880

RESUMO

Newborns and preterm infants require accurate and continuous monitoring of their vital parameters. Contact-based methods of monitoring have several disadvantages, thus, contactless systems have increasingly attracted the neonatal communities' attention. Camera-based photoplethysmography is an emerging method of contactless heart rate monitoring. We conducted a pilot study in 42 healthy newborn and near-term preterm infants for assessing the feasibility and accuracy of a multimodal 3D camera system on heart rates (HR) in beats per min (bpm) compared to conventional pulse oximetry. Simultaneously, we compared the accuracy of 2D and 3D vision on HR measurements. The mean difference in HR between pulse oximetry and 2D-technique added up to + 3.0 bpm [CI-3.7 - 9.7; p = 0.359, limits of agreement (LOA) ± 36.6]. In contrast, 3D-technique represented a mean difference in HR of + 8.6 bpm (CI 2.0-14.9; p = 0.010, LOA ± 44.7) compared to pulse oximetry HR. Both, intra- and interindividual variance of patient characteristics could be eliminated as a source for the results and the measuring accuracy achieved. Additionally, we proved the feasibility of this emerging method. Camera-based photoplethysmography seems to be a promising approach for HR measurement of newborns with adequate precision; however, further research is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...