Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22216, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564443

RESUMO

The demand for reliable indicators to quantify soil health has increased recently. We propose and test the use of soil microbial functional diversity as an indicator of multifunctional performance in agriculturally important areas. Agricultural fields in the Mediterranean and semiarid regions of Israel were selected as test sites and measured in Spring and Autumn seasons. Measurements included microbial parameters, basic soil abiotic properties and biological responses to agricultural management relative to measures of a natural ecosystem. Using a canonical correlation analysis we found that soil moisture was the most important basic soil property with different responses in Spring and Autumn. In Spring, it had a strongly negative relation with microbial biomass (MB), community level physiological profiling (CLPP) and the Shannon-Weaver index H', while in Autumn it had a strong relation with CLPP. We further show a significant interaction between CLPP and climate for land-use type "orchards". CLPP measured in the autumn season was thus identified as a useful and rapid biological soil health indicator, recommended for application in semiarid and Mediterranean agricultural regions. Apart from obtaining a better understanding of CLPP as the soil indicator, the study concludes that CLPP is well suited to differentiate between soils in different climates, seasons and land use types. The study shows a promising direction for further research on characterizing soil health under a larger variety of conditions.


Assuntos
Ecossistema , Solo , Biomarcadores Ambientais , Microbiologia do Solo , Agricultura
2.
Sci Rep ; 12(1): 7701, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546594

RESUMO

According to the attention restoration theory, exposure to nature (ETN) renews one's capacity to focus attention, which decreases cognitive fatigue and therefore may increase positive emotions. Indeed, natural settings have been associated with high prevalence of happy facial expressions (HFE). However, how universal the association is, remains unclear. We explored the ETN-HFE association in Boston, US, representing a less collectivistic culture, and Yokohama, Japan, representing a more collectivistic one. Evidence from satellite images and social network data, using geoinformatics and statistical tools, revealed that individuals from both societies exhibited more happiness when they were photographed in more natural settings. These associations varied with temporal variations expressed through weekly and annual effects. In addition, we found that the presence of others was also associated with prevalence of HFE in natural settings at Yokohama and Boston but the relation was significantly stronger in Boston. Despite some relatively minor differences between the countries, these results support the universality of the association between ETN and HFE.


Assuntos
Expressão Facial , Felicidade , Boston , Emoções , Humanos , Individualidade , Japão
3.
Sci Total Environ ; 648: 1484-1491, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340293

RESUMO

The wellbeing of soils is crucial for securing food production worldwide. The soil health (SH) concept has been introduced due to an evolving understanding that soil is not just a growing medium for crops but that it provides a foundation for other essential ecosystem services (ES). The SH concept requires development of a holistic index for reliable and quantitative assessment of soil wellbeing related to the effects of different soil management practices and land uses. The aims of this paper are to: (1) review current approaches and methods to assess SH, (2) highlight the role of soil ES in characterizing soil function and (3) propose a new approach to assess SH via monitoring of ES provided by soils. We introduce a brief critical review of the following three main steps required for assessment of common SH indices: (1) selection of relevant attributes; (2) quantification and scoring approaches; and (3) integration of the selected attributes to construct the SH index. These steps usually include statistical or expert opinion-based approaches. In addition, we present a new approach that highlights the relevance and importance of soil ES, i.e., provisioning, regulating and supporting services that must be quantified for comprehensive assessment of soil functions and for fitting models that relate selected soil attributes to ES. This will allow practitioners and scholars to identify the most significant and universal attributes, quantify the relative contribution of each attribute to each ES, and subsequently assess the overall health of soils.

4.
Environ Manage ; 59(5): 762-776, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28175929

RESUMO

This study seeks to attain a better understanding of the information that is required by governments to prepare for earthquakes, and of the constraints they face in obtaining this information. The contributions of the study are two-fold. A survey that was conducted among those responsible for earthquake preparedness actions in different governmental agencies and at different levels revealed on the one hand a desire for information on a broad range of topics, but on the other hand that no resources were allocated in practice to gather this information. A Geographic Information System-based process that was developed following the survey, allowed the required information on seismic hazards and loss and damage risks to be rapidly collected, mapped and integrated. This supported the identification of high-priority areas, for which a more detailed analysis could be initiated. An implementation of the process showed promise, and confirmed its feasibility. Its relative simplicity may ensure that an earthquake preparedness process is initiated by governments that are otherwise reluctant to allocate resources for this purpose.


Assuntos
Planejamento em Desastres , Terremotos , Gestão da Informação , Sistemas de Informação Geográfica , Órgãos Governamentais , Inquéritos e Questionários
5.
Ecol Appl ; 25(4): 1054-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26465042

RESUMO

Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.


Assuntos
Ecossistema , Pinus/fisiologia , Chuva , Árvores/fisiologia , Monitoramento Ambiental/métodos , Florestas , Israel , Dinâmica Populacional , Astronave , Fatores de Tempo , Água
6.
Oecologia ; 177(4): 1025-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25656584

RESUMO

We investigated forest responses to global warming by observing: (1) planted Pinus halepensis forests, (2) an aridity gradient-with annual precipitation (P) ranging from ~300 to ~700 mm, and (3) periods of wet and dry climate that included the driest period during at least the last 110 years. We examined: (1) how the length of climatic integration periods to which trees are most responsive varies in space and time, (2) the extent to which competition modulates growth decline during drought (2011) and subsequent recovery (2012) years. The temporal scale of rainfall that was most influential on growth shortened in progressing southward, and in the drier than in the wetter period. Long-term underground water storage, as reflected in the relationship of growth to multiple-year rainfall, remained significant up to the point where P ≈ 500 mm. Under drier conditions (P < 500 mm) in both space and time, influential rainfall scales shortened, probably reflecting a diminishing role of water storage. These drier locations are the first from which the species would be likely to retreat if global warming intensified. Competition appeared to set an upper limit to growth, while growth variation among individual trees increased as competition-intensity decreased. That upper limit increased in 2012 compared with 2011. The observed insensitivity of slow-growing trees to competition implies that mortality risk may be density independent, when even any potential for higher soil moisture availability in open stands is lost to evapotranspiration before it can benefit tree growth.


Assuntos
Adaptação Fisiológica , Secas , Florestas , Aquecimento Global , Pinus/fisiologia , Chuva , Água/metabolismo , Clima , Dessecação , Ecologia , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Solo , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/fisiologia
7.
Mov Ecol ; 2(1): 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520817

RESUMO

Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...