Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591517

RESUMO

The microstructure plays a crucial role in determining the properties of metallic materials, in terms of both their strength and functionality in various conditions. In the context of the formation of microstructure, phase transformations that occur in materials are highly significant. These are processes during which the structure of a material undergoes changes, most commonly as a result of variations in temperature, pressure, or chemical composition. The study of phase transformations is a broad and rapidly evolving research area that encompasses both experimental investigations and modeling studies. A foundational understanding of carbon diffusion and phase transformations in materials science is essential for comprehending the behavior of materials under different conditions. This understanding forms the basis for the development and optimization of materials with desired properties. The aim of this paper is to create a three-dimensional model for carbon diffusion in the context of modeling diffusional phase transformations occurring in carbon steels. The proposed model relies on the utilization of the LBM (Lattice Boltzmann Method) and CUDA architecture. The resultant carbon diffusion model is intricately linked with a microstructure evolution model grounded in FCA (Frontal Cellular Automata). This manuscript provides a concise overview of the LBM and the FCA method. It outlines the structure of the developed three-dimensional model for carbon diffusion, details its correlation with the microstructure evolution model, and presents the developed algorithm for simulating carbon diffusion. Demonstrative examples of simulation results, illustrating the growth of the emerging phase and affected by various model parameters within particular planes of the 3D calculation domain, are also presented.

2.
Materials (Basel) ; 16(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37445179

RESUMO

The structure of metallic materials has a significant impact on their properties. One of the most popular methods to form the properties of metal alloys is heat treatment, which uses thermally activated transformations that take place in metals to achieve the required mechanical or physicochemical properties. The phase transformation in steel results from the fact that one state becomes less durable than the other due to a change in conditions, for example, temperature. Phase transformations are an extensive field of research that is developing very dynamically both in the sphere of experimental and model research. The objective of this paper is the development of a 3D heat flow model to model heat transfer during diffusional phase transformations in carbon steels. This model considers the two main factors that influence the transformation: the temperature and the enthalpy of transformation. The proposed model is based on the lattice Boltzmann method (LBM) and uses CUDA parallel computations. The developed heat flow model is directly related to the microstructure evolution model, which is based on frontal cellular automata (FCA). This paper briefly presents information on the FCA, LBM, CUDA, and diffusional phase transformation in carbon steels. The structures of the 3D model of heat flow and their connection with the microstructure evolution model as well as the algorithm for simulation of heat transfer with consideration of the enthalpy of transformation are shown. Examples of simulation results of the growth of the new phase that are determined by the overheating/overcooling and different model parameters in the selected planes of the 3D calculation domain are also presented.

3.
Materials (Basel) ; 15(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363436

RESUMO

Materials science gives theoretical and practical tools, while new modeling methods and platforms provide rapid and efficient development, improvement, and optimization of old and new technologies. Recently, impressive progress has been made in the development of computer software and systems. The frontal cellular automata (FCA), lattice Boltzmann method (LBM), and modeling platforms based on them are considered in the paper. The paper presents basic information on these methods and their application for modeling phenomena and processes in materials science. Recrystallization, crystallization, phase transformation, processes such as flat and shape rolling, additive manufacturing technologies (Selective Laser Sintering (SLS)/ Selective Laser Melting (SLM)), and others are examples of comprehensive and effective modeling by the developed systems. Selected modeling results are also presented.

4.
Materials (Basel) ; 15(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160973

RESUMO

A new platform for three-dimensional simulation of Additive Layer Manufacturing (ALM) processes is presented in the paper. The platform is based on homogeneous methods-the Lattice Boltzmann Method (LBM) with elements of Cellular Automata (CA). The platform represents a new computer-based engineering technique primarily focused on Selective Laser Melting (SLM) technology. Innovative computational strategies and numerical algorithms for simulation and analysis of entire powder bed-based technology with changes in state of matter (melting-solidification) are presented in the paper. The models deal mainly with heat transfer, melting and solidification, and free-surface flow. Linking LBM and CA into a complex holistic model allows for complete full-scale simulations avoiding complicated interfaces. The approach is generic and can be applied to different multi-material powder bed-based SLM processes. A methodology for the adaptation of the model to the real material (Ti-6Al-4V alloy) and processing parameters is presented. The paper presents the first quantitative results obtained on the platform and shows the ability of the model to simulate and analyze a very complex technology, entirely without a complicated interface between the sub-models. It solves the large-scale problem connected with computer-aided design and analysis of new multi-passes and multi-materials processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...