Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296618

RESUMO

Over the recent decades, the use of extracellular vesicles (EVs) has attracted considerable attention. Herein, we report the development of a novel EV-based drug delivery system for the transport of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1) to treat Batten disease (BD). Endogenous loading of macrophage-derived EVs was achieved through transfection of parent cells with TPP1-encoding pDNA. More than 20% ID/g was detected in the brain following a single intrathecal injection of EVs in a mouse model of BD, ceroid lipofuscinosis neuronal type 2 (CLN2) mice. Furthermore, the cumulative effect of EVs repetitive administrations in the brain was demonstrated. TPP1-loaded EVs (EV-TPP1) produced potent therapeutic effects, resulting in efficient elimination of lipofuscin aggregates in lysosomes, decreased inflammation, and improved neuronal survival in CLN2 mice. In terms of mechanism, EV-TPP1 treatments caused significant activation of the autophagy pathway, including altered expression of the autophagy-related proteins LC3 and P62, in the CLN2 mouse brain. We hypothesized that along with TPP1 delivery to the brain, EV-based formulations can enhance host cellular homeostasis, causing degradation of lipofuscin aggregates through the autophagy-lysosomal pathway. Overall, continued research into new and effective therapies for BD is crucial for improving the lives of those affected by this condition.


Assuntos
Vesículas Extracelulares , Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Lipofuscinoses Ceroides Neuronais/metabolismo , Serina Proteases/genética , Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Lipofuscina/metabolismo , Lipofuscina/uso terapêutico , Neuroproteção , Tripeptidil-Peptidase 1 , Doenças por Armazenamento dos Lisossomos/metabolismo , Vesículas Extracelulares/metabolismo , Lisossomos/metabolismo , Autofagia
2.
Cells ; 11(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741061

RESUMO

Extracellular vesicles (EVs) are cell-derived nanoparticles that facilitate transport of proteins, lipids, and genetic material, playing important roles in intracellular communication. They have remarkable potential as non-toxic and non-immunogenic nanocarriers for drug delivery to unreachable organs and tissues, in particular, the central nervous system (CNS). Herein, we developed a novel platform based on macrophage-derived EVs to treat Parkinson disease (PD). Specifically, we evaluated the therapeutic potential of EVs secreted by autologous macrophages that were transfected ex vivo to express glial-cell-line-derived neurotrophic factor (GDNF). EV-GDNF were collected from conditioned media of GDNF-transfected macrophages and characterized for GDNF content, size, charge, and expression of EV-specific proteins. The data revealed that, along with the encoded neurotrophic factor, EVs released by pre-transfected macrophages carry GDNF-encoding DNA. Four-month-old transgenic Parkin Q311(X)A mice were treated with EV-GDNF via intranasal administration, and the effect of this therapeutic intervention on locomotor functions was assessed over a year. Significant improvements in mobility, increases in neuronal survival, and decreases in neuroinflammation were found in PD mice treated with EV-GDNF. No offsite toxicity caused by EV-GDNF administration was detected. Overall, an EV-based approach can provide a versatile and potent therapeutic intervention for PD.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Animais , Sistema Nervoso Central , Vesículas Extracelulares/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Macrófagos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...